English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

基于聚N-异丙基丙烯酰胺的细胞智能分离材料

刘丹, 王涛, 刘新星, 王朝阳, 童真   

  1. 华南理工大学材料科学研究所 广州 510640
  • 收稿日期:2011-02-01 修回日期:2011-04-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 童真 E-mail:mcztong@scut.edu.cn
  • 基金资助:

    国家高技术发展计划(863)项目(No. 2009AA03Z102)、中央高校基本科研业务经费项目(No. 2009ZZ0036)和广东省科技计划项目(No. 2010B010800017)资助

Intelligent Cell Detachment Materials Based on Poly(N-Isopropylacrylamide)

Liu Dan, Wang Tao, Liu Xinxing, Wang Chaoyang, Tong Zhen   

  1. Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China
  • Received:2011-02-01 Revised:2011-04-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Tong Zhen E-mail:mcztong@scut.edu.cn

N -异丙基丙烯酰胺(PNIPAm)在水中是具有温度响应性的智能高分子材料,可用于细胞培养和自动脱附。本文从材料的制备方法出发,介绍了电子束照射接枝、等离子体处理接枝、表面活性自由基聚合、水凝胶等方法制备的材料对细胞培养及脱附的影响;阐述了细胞的脱附机理;讨论了加快细胞脱附的方法,包括共聚改性PNIPAm、PNIPAm接枝多孔膜、聚乙二醇(PEG)共聚PNIPAm接枝多孔膜、聚偏氟乙烯(PVDF)膜辅助细胞转移。从PNIPAm温敏性材料表面智能分离得到的细胞片因结构完整并保留了细胞外基质成分,在组织修复中得到了应用。

Poly(N-isopropylacrylamide) (PNIPAm) exhibits temperature-response due to the hydrophilic-hydrophobic transition in aqueous solutions and hydrogels at the lower critical solution temperature (LCST). This characteristic has been used for cell proliferation at the hydrophobic PNIPAm surface and spontaneous detachment of the cell sheet upon the hydrophilic transition at LCST. In this review, several methods were introduced to prepare temperature-responsive substrates for the cell culture, proliferation and detachment, including electron beam irradiation grafting, plasma treatment grafting, living radical polymerization on surface, and hydrogels. The two-step mechanism of spontaneous cell detachment from the PNIPAm modified substrates was briefly discussed considering the hydrophilic-hydrophobic transition and the cells' shape change induced by the cell metabolism. The limitation of this mechanism to other sorts of cells was pointed out. Some approaches to accelerate the spontaneous detachment of cells from PNIPAm modified substrates for rapid cell harvest were described, such as copolymerization of PNIPAm to increase hydrophilicity below the LCST, PNIPAm grafted porous membrane for fast water diffusion, poly(ethylene glycol)-co-PNIPAm grafted porous membrane for increasing hydrophilicity, and poly(vinylidene difluoride) membrane assistant cell transfer. Cell sheets harvested from the temperature-responsive PNIPAm substrates by lowering the temperature without enzymatic treatment retained their intact structure with the cell-cell junctions and deposited extracellular matrices (ECM), which promised applications in tissue repair.

Contents
1 Introduction
2 Preparation of temperature-responsive cell culture substrates
2.1 Electron beam irradiation grafting
2.2 Plasma treatment grafting
2.3 Living radical polymerization on surface
2.4 Hydrogels
3 Mechanism of cell detachment
4 Methods for accelerating cell detachment
4.1 Copolymerization of PNIPAm
4.2 PNIPAm grafted porous membrane
4.3 PEG-co-PNIPAm grafted porous membrane
4.4 PVDF membrane assistant cell transfer
5 Conclusions and perspectives

中图分类号: 

()

[1] Van Osch G J V M, Brittberg M, Dennis J E, Bastiaansen-Jenniskens Y M, Erben R G, Konttinen Y T, Luyten F P. J. Cell. Mol. Med., 2009, 13(5): 792-810
[2] Chung S Y. Lancet, 2006, 367(9518): 1215-1216
[3] Yang J, Yamato M, Kohno C, Nishimoto A, Sekine H, Fukai F, Okano T. Biomaterials, 2005, 26(33): 6415-6422
[4] Li A, Dearman B L, Crompton K E, Moore T G, Greenwood J E. J. Burn Care Res., 2009, 30(4): 717-728
[5] Ide T, Nishida K, Yamato M, Sumide T, Utsumi M, Nozaki T, Kikuchi A, Okano T, Tano Y. Biomaterials, 2006, 27: 607-614
[6] Canavan H E, Cheng X, Graham D J, Ratner B D, Castner D G. J. Biomed. Mater. Res. A, 2005, 75A(1): 1-13
[7] Nakajima K, Honda S, Nakamura Y, López-Redondo F, Kohsaka S, Yamato M, Kikuchi A, Okano T. Biomaterials, 2001, 22: 1213-1223
[8] Takezawa T, Mori Y, Yoshizato K. Biotechnology, 1990, 8(9): 854-856
[9] Takezawa T, Yamazaki M, Mori Y, Yonaha T, Yoshizato K. J. Cell Sci., 1992, 101(3): 495-501
[10] Yamada N, Okano T, Sakai K, Karikusa F, Sawasaki Y, Sakurai Y. Makromol. Rapid Commun., 1990, 11(11): 571-576
[11] Kikuchi A, Okuhara M, Karikusa F, Sakurai Y, Okano T. J. Biomater. Sci. Polym. Ed., 1998, 9: 1331-1348
[12] Ebara M, Yamato M, Nagai S, Aoyagi T, Kikuchi A, Sakai K, Okano T. Surf. Sci., 2004, 570: 134-141
[13] Akiyama Y, Kikuchi A, Yamato M, Okano T. Langmuir, 2004, 20(13): 5506-5511
[14] Tang Z L, Akiyama Y, Yamato M, Okano T. Biomaterials, 2010, 31: 7435-7443
[15] Pan Y V, Wesley R A, Luginbuhl R, Denton D D, Ratner B D. Biomacromolecules, 2001, 2: 32-36
[16] Cheng X H, Canavan H E, Stein M J, Hull J R, Kweskin S J, Wagner M S, Somorjai G A, Castner D G, Ratner B D. Langmuir, 2005, 21: 7833-7841
[17] Canavan H E, Cheng X H, Graham D J, Ratner B D, Castner D G. Langmuir, 2005, 21:1949-1955
[18] Schmaljohann D, Oswald J, Jrgensen B, Nitschke M, Beyerlein D, Werner C. Biomacromolecules, 2003, 4: 1733-1739
[19] Kwon O H, Kikuchi A, Yamato M, Okano T. Biomaterials, 2003, 24(7): 1223-1232
[20] Mizutani A, Kikuchi A, Yamato M, Kanazawa H, Okano T. Biomaterials, 2008, 29: 2073-2081
[21] Yu Q, Zhang Y X, Chen H, Zhou F, Wu Z Q, Huang H, Brash J L. Langmuir, 2010, 26(11): 8582-8588
[22] Kong B, Choi J S, Jeon S, Choi I S. Biomaterials, 2009, 30: 5514-5522
[23] Li L H, Zhu Y, Li B, Gao C Y. Langmuir, 2008, 24: 13632-13639
[24] Takahashi H, Nakayama M, Yamato M, Okano T. Biomacromolecules, 2010, 11: 1991-1999
[25] Haraguchi K, Takehisa T, Ebato M. Biomacromolecules, 2006, 7: 3267-3275
[26] Hou Y, Matthews A R, Smitherman A M, Bulick A S, Hahn M S, Hou H, Han A, Grunlan M A. Biomaterials, 2008, 29: 3175-3184
[27] He X L, Yu S, Dong Y Y, Yan F Y, Chen L. J. Mater. Sci., 2009, 44: 4078-4086
[28] Wang J Y, Chen L, Zhao Y P, Guo G, Zhang R. J. Mater. Sci. Mater. Med., 2009, 20: 583-590
[29] 贺晓凌(He X L), 王金燕(Wang J Y), 肖飞(Xiao F), 陈莉(Chen L). 高分子学报(Acta Polymerica Sinica), 2009, 12: 1274-1281
[30] Xiao F, Chen L, Xing R F, Zhao Y P, Dong J, Guo G, Zhang R. Colloids and Surfaces B: Biointerfaces, 2009, 71: 13-18
[31] Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. Biomaterials, 1995, 16(4): 297-303
[32] Yamato M, Konno C, Kushida A, Hirose M, Utsumi M, Kikuchi A, Okano T. Biomaterials, 2000, 21(10): 981-986
[33] von Recum H, Kikuchi A, Yamato M, Sakurai Y, Okano T, Kim S W. Tissue Eng., 1999, 5(3): 251-265
[34] Reed J A, Lucero A E, Cooperstein M A, Canavan H E. J. Appl. Biomater. Biomech., 2008, 6: 81-88
[35] Kaneko Y, Nakamura S, Sakai K, Aoyagi T, Kikuchi A, Sakurai Y, Okano T. Macromolecules, 1998, 31: 6099-6105
[36] Ebara M, Aoyagi T, Sakai K, Okano T. Macromolecules, 2000, 33: 8312-8316
[37] Ebara M, Yamato M, Hirose M, Aoyagi T, Kikuchi A, Sakai K, Okano T. Biomacromolecules, 2003, 4: 344-349
[38] Kwon O H, Kikuchi A, Yamato M, Sakurai Y, Okano T. J. Biomed. Mater. Res., 2000, 50(1): 82-89
[39] Kushida A, Yamato M, Kikuchi A, Okano T. J. Biomed. Mater. Res., 2001, 54: 37-46
[40] Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y. N. Engl. J. Med., 2004, 351: 1187-1196
[41] Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T. Circ. Res., 2002, 90: E40-E48

[1] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[2] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[3] 王猛, 杨剑峰. 基于液晶弹性体的软体机器人[J]. 化学进展, 2022, 34(1): 168-177.
[4] 郑明心, 曾敏, 陈曦, 袁金颖. 光响应形变液晶聚合物的结构与应用[J]. 化学进展, 2021, 33(6): 914-925.
[5] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[6] 王猛, 马丹阳, 王成杰. 近红外光响应液晶弹性体[J]. 化学进展, 2020, 32(10): 1452-1461.
[7] 赵倩, 李盛华, 刘育*. 环糊精超分子凝胶的构筑及其功能[J]. 化学进展, 2018, 30(5): 673-683.
[8] 王平, 杨巧凤, 赵传壮*. 光响应性微凝胶的分子设计和智能材料构筑[J]. 化学进展, 2017, 29(7): 750-756.
[9] 王宏喜, 熊雨婷, 卿光焱*, 孙涛垒*. 生物分子响应性高分子材料[J]. 化学进展, 2017, 29(4): 348-358.
[10] 熊兴泉*, 江云兵. 可逆Diels-Alder反应[J]. 化学进展, 2013, 25(06): 999-1011.
[11] 王文谦, 陈林峰, 温永强*, 张学记, 宋延林, 江雷. 基于介孔二氧化硅纳米颗粒的可控释放体系[J]. 化学进展, 2013, 25(05): 677-691.
[12] 谢锐, 杨眉, 程昌敬, 姜晶, 褚良银. 分子识别与温度响应复合智能材料[J]. 化学进展, 2012, 24(0203): 195-202.
[13] 汪海平, 容敏智, 章明秋. 微胶囊填充型自修复聚合物及其复合材料[J]. 化学进展, 2010, 22(12): 2397-2407.
[14] 罗春华 董秋静 郑朝晖 丁小斌 彭宇行. 智能聚合物包覆的金纳米粒子*[J]. 化学进展, 2009, 21(12): 2674-2681.
[15] 曹良成,王跃川. 紫精类电致变色材料的制备和机理[J]. 化学进展, 2008, 20(09): 1353-1360.