English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

级次纳米结构材料及其液相合成

刘国栋1, 陈代荣2   

  1. 1. 济宁学院化学与化工系 济宁 273155;
    2. 山东大学化学与化工学院 济南 250100
  • 收稿日期:2011-02-01 修回日期:2011-03-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 刘国栋 E-mail:liugd001@hotmail.com
  • 基金资助:

    山东省优秀中青年科学家科研奖励基金项目(No.BS2010CL009)资助

Hierarchical Nanostructures and Their Solution-Phase Synthesis

Liu Guodong1, Chen Dairong2   

  1. 1. Department of Chemistry and Chemical Engineering, Jining University, Jining 273155,China;
    2. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • Received:2011-02-01 Revised:2011-03-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Liu guodong E-mail:liugd001@hotmail.com

级次纳米结构材料因其新颖的结构,独特的化学、物理性质,以及形貌和尺寸对这些性质极大地影响,使得它在光、电、磁等方面的性质更加丰富, 为实现由下到上构建纳米器件提供了坚实的基础。由此级次纳米结构材料引起化学家和材料学家的极大兴趣, 成为纳米材料化学领域中引人注目的研究方向之一。本文综述了近年来国内外级次纳米结构材料的最新研究进展,重点介绍了介孔材料、具有级次结构的空心球、气凝胶和其他典型的级次纳米结构,归纳了级次纳米结构制备中的各种液相合成方法及其特点,讨论了级次纳米结构的合成机制及各种影响因素,并在此基础上对级次纳米结构材料在一些领域的应用前景进行了展望。

The hierarchical nanostructures built from nanounits, such as nanoparticles, nanorods/wires/belts, and nanoplates/disks/sheets, which exhibit unique physical and chemical properties different from those of nanounits, have been widely investigated. To find and investigate the novel nanoarchitectures or hierarchical nanostructures for some functional compounds is still an interesting task not only in answering basic research questions but also in technological applications. This article reviews the recent progress of hierarchical nanomaterials research. In this article mesoporous material, hollow structures, aerogel and other typical hierarchical nanostructures are mainly introduced. A lot of useful solution-phase synthesis routes are classified according to the category, including hydro/solvothermal routes, template methods, solid spheres as precursors, structure-directed reagent assistant methods and irradiation of microwave reaction. The latest developments of hierarchical nanostructures prepared by above methods and their synthesis routes, mechanism are described in detail. And a brief outlook of potential applications of these new materials is also given.

Contents
1 Introduction
2 Typical hierarchical nanostructures
2.1 Mesoporous materials
2.2 Hollow structures
2.3 Aerogel
2.4 Other typical hierarchical nanostructures
3 Synthesis methods of hierarchical nanostructures
3.1 Hydro/solvothermal routes
3.2 Template methods
3.3 Solid spheres as precursors
3.4 Structure-directed reagent assistant methods
3.5 Irradiation of microwave reaction
4 Structure feather of hierarchical nanostructures and potential applications
5 Conclusion and outlook

中图分类号: 

()

[1] Heath J R. Nanoscale Materials, 1999, 32 : 388-388
[2] Alivisatos A P. Acc. Chem. Res., 2001, 34 : 257-264
[3] Ewers T D, Sra A K, Norris B C, Cable R E, Cheng C H, Shantz D F, Schaak R E. Chem. Mater., 2005, 17 : 514-520
[4] Mann S. Angew. Chem. Int. Ed., 2000, 39 : 3393-3406
[5] Yang H, Wu X L, Cao M H, Guo Y G. J. Phys. Chem. C, 2009, 113 : 3345-3351
[6] Brumbach M T, Alam T M, Kotula P G, McKenzie B B, Bunker B C. ACS Applied Materials & Interfaces, 2010, 2 : 778-787
[7] Kuang D B, Brezesinski T. J. Am. Chem. Soc., 2004, 126 : 10534-10535
[8] Yin Y D, Lu Y, Gates B, Xia Y N. J. Am. Chem. Soc., 2001, 123 : 8718-8729
[9] Morikawa M, Yoshihara M, Endo T, Kimizuka N. J. Am. Chem. Soc., 2005, 127 : 1358-1359
[11] Matsui H, Holtman C. Nano Lett., 2002, 2 : 887-889
[12] Fresco Z M, Suez I, Backer S A, Frechet J M J. J. Am. Chem. Soc., 2004, 126 : 8374-8375
[13] Gao J B, Yu A P, Itkis M E, Bekyarova E, Zhao B, Niyogi S, Haddon R C. J. Am. Chem. Soc., 2004, 126 : 16698-16699
[14] Ewers T D, Sra A K, Norris B C, Cable R E, Cheng C H, Shantz D F, Schaak R E. Chem. Mater., 2005, 17 : 514-520
[15] Wu C Z, Xie Y, Wang D, Yang J, Li T W. J. Phys. Chem. B, 2003, 107 : 13583-13587
[16] Ma Y R, Qi L M, Ma J M, Cheng H M. Cryst. Growth Des., 2004, 4 : 351-354
[17] Yu J, Yu X, Huang B, Zhang X, Dai Y. Cryst. Growth Des., 2009, 9 : 1474-1480
[18] Yang L X, Zhu Y J, Tong H, Liang Z H, Wang W W. Cryst. Growth Des., 2007, 7 : 2716-2719
[19] 徐如人(Xu R R), 庞文琴(Pang W Q). 无机合成与制备化学(Inorganic Synthesis and Preparative Chemistry ) 北京: 高等教育出版社(Beijing: Higher Education Press), 1999, 440-454
[20] Frasch J L B, Soulard M, Patarin J, Zana R. Langmuir, 2000, 16 : 9049-9057
[21] Zhang W P, Pinnavaia T. Chem. Mater., 1997, 9 : 2491-2498
[22] Walker S K, Joseph M, Zasadzinski A. Nature, 1997, 387 : 61-64
[23] Wu C G, Bein T. Chem. Commun., 1996, 925-926
[24] Lin W, Chen J, Sun Y, Pang W. Chem. Commun., 1995, 2367-2368
[25] Yang P, Zhao D, Margolese D. Nature, 1998, 396 : 152-155
[26] Boettcher S W, Fan J, Tsung C K, Shi Q H, Stucky G D. Acc. Chem. Res., 2007, 40 : 784-792
[27] Wan Y, Zhao D Y. Chem. Rev., 2007, 107 : 2821-2860
[28] Yan X H, Zhu P L, Fei J B, Li J B. Adv. Mater., 2010, 22 : 1283-1287
[29] Sauvage F, Di Fonzo F, Bassi A L, Casari C S, Russo V, Divitini G, Ducati C, Bottani C E, Comte P, Graetzel M. Nano Lett., 2010, 10 : 2562-2567
[30] Cao S W, Zhu Y J, Ma M Y, Li L, Zhang L. J. Phys. Chem. C, 2008, 112 : 1851-1856
[31] Wang C H, Shao C L, Zhang X T, Liu Y C. Inorg. Chem., 2009, 48 : 7261-7268
[32] Zhao W R, Chen H R, Li Y S, Li L, Lang M D, Shi J L. Adv. Funct. Mater., 2008, 18 : 2780-2788
[33] Sun X M, Li Y D. Angew. Chem. Int. Ed., 2004, 43 : 3827-3831
[34] Titirici M M, Antonietti M, Thomas A. Chem. Mater., 2006, 18 : 3808-3812
[35] Wang J, Loh K P, Zhong Y L, Lin M, Ding J, Foo Y L. Chem. Mater., 2007, 19 : 2566-2572
[36] Nakashima T, Kimizuka N. J. Am. Chem. Soc., 2003, 125 : 6386-6387
[37] Sun Y G, Xia Y N. Science, 2002, 298 : 2176-2179
[38] Zhao X F, Li T K, Xi Y Y, Ng D H L, Yu J. G. Crys. Growth & Design, 2006, 6 : 2210-2213
[39] Xu H L, Wang W Z. Angew. Chem. Int. Ed., 2007, 46 : 1489-1492
[40] Yin Y D, Rioux R M, Erdonmez C K, Hughes S, Somorjai G A, Alivisatos A P. Science, 2004, 304 : 711-714
[41] Liu B, Zeng H C. J. Am. Chem. Soc., 2004, 126 : 16744-16746
[42] Liu B, Zeng H C. J. Am. Chem. Soc., 2004, 126 : 8124-8125
[43] Li J, Zeng H C. Angew. Chem. Int. Ed., 2005, 44 : 4342-4345
[44] Kistler S S. Nature, 1931, 127 : 741-742
[45] Hüsing N, Schubert U. Angew. Chem. Int. Ed., 1998, 37 : 22-45
[46] Yang H, Choi S, Hyun S, Park C. Thin Solid Films, 1999, 348 : 69-73
[47] Pierre A, Begag R, Pajonk G J. Mater. Sci., 1999, 34 : 4937-4944
[48] Hair L M, Coronado P R, Reynolds J G. J. Non-Cryst. Solids, 2000, 270 : 115-122
[49] Muller C A, Schneider M, Mallat T, Baiker A. J. Catal., 2000, 189 : 221-232
[50] Ayers M R, Song X Y, Hunt A J. J. Mater. Sci., 1996, 31 : 6251-6257
[51] Su Y, Yan X H, Wang A H, Fei J B, Cui Y, He Q, Li J B. J. Mater. Chem., 2010, 20 : 6734-6740
[52] Fei J B, Cui Y, Yan X H, Yang Y, Su Y, Li J B. J. Mater. Chem., 2009, 19 : 3263-3267
[53] Sun S D, Kong C C, Deng D C, Song X P, Ding B J, Yang Z M. CrystEngComm., 2011, 13 : 63-66
[54] Wang C X, Yin L W, Zhang L Y, Qi Y X, Lun N, Liu N N. Langmuir, 2010, 26 : 12841-12848
[55] Zhang Y, Xu J Q, Xiang Q, Li H, Pan Q Y, Xu P C. J. Phys. Chem. C, 2009, 113 : 3430-3435
[56] Zhu P L, Zhang J W, Wu Z S, Zhang Z. J. Cryst. Growth Des., 2008, 8 : 3148-3153
[57] Feng L, Zhang Y N, Li M Z, Zheng Y M, Shen W Z, Jiang L. Langmuir, 2010, 26 : 14885-14888
[58] Zhong L S, Hu J S, Liang H P, Cao A M, Song W G, Wan L. J. Adv. Mater., 2006, 18 : 2426-2431
[59] Ullah M H, Chung W S, Kim I, Ha C S. Small, 2006, 2 : 870-873
[60] Bao N Z, Shen L M, Takata, T., Domen, K. Chem. Mater., 2008, 20 : 110-117
[61] Chen S H, Fan Z Y, Carroll D L. J. Phys. Chem. B, 2002, 106 : 10777-10781
[62] Jana N R, Gearheart L, Murphy C J. Adv. Mater., 2001, 13 : 1389-1393
[63] Wen X G, Xie Y T, Mak W C, Cheung K Y, Li X Y, Renneberg R, Yang S. Langmuir, 2006, 22 : 4836-4842
[64] Zeng S Y, Tang K B, Li T W, Liang Z H, Wang D, Wang Y K, Qi Y X, Zhou W W. J. Phys. Chem. C, 2008, 112 : 4836-4843
[65] Corma A, Atienzar P, Garcia H, Chane-Ching J Y. Nat. Mater., 2004, 3 : 394-397
[66] Li H B, Chai L L, Wang X Q, Wu X Y, Xi G C, Liu Y K, Qian Y T. Cryst. Growth Des., 2007, 7 : 1918-1922
[67] Zheng Y H, Cheng Y, Wang Y S, Zhou L H, Bao F, Jia C. J. Phys. Chem. B, 2006, 110 : 8284-8288
[68] Park S, Lim J H, Chung S W, Mirkin C A. Science, 2004, 303 : 348-351
[69] Storhoff J J, Mirkin C A. Chem. Rev., 1999, 99 : 1849-1862
[70] Yang J, Li C, Quan Z, Zhang C, Yang P, Li Y, Yu C, Lin J. J. Phys. Chem. C, 2008, 112 : 12777-12785
[71] Zhang Y J, Zhang Y, Wang Z H, Li D, Cui T Y, Liu W, Zhang Z D. Eur. J. Inorg. Chem., 2008, 2733-2738
[72] Shang X, Lu W, Yue B, Zhang L, Ni J, Lv Y, Feng Y. Cryst. Growth Des., 2009, 9 : 1415-1420
[73] Yang H, Wu X L, Cao M H, Guo Y G. J. Phys. Chem. C, 2009, 113 : 3345-3351
[74] Gu Z J, Zhai T Y, Gao B F, Zhang G J, Ke D M, Ma Y, Yao J N. Cryst. Growth Des., 2007, 7 : 825-830
[75] Gorai S, Ganguli D, Chaudhuri S. Cryst. Growth Des., 2005, 5 : 875-877
[76] Gou X L, Cheng F Y, Shi Y H, Zhang L, Peng, S J, Chen J, Shen P W. J. Am. Chem. Soc., 2006, 128 : 7222 -7229
[77] Martin C R. Science, 1994, 266 : 1961-1966
[78] Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Nature, 1992, 359 : 710-712
[79] Caruso F, Caruso R, Mohwald H. Science, 1998, 282 : 1111-1114
[80] Zhang G J, Shen Z R, Liu M, Guo C H, Sun P C, Yuan Z Y, Li B H, Ding D T, Chen T H. J. Phys. Chem. B, 2006, 110 : 25782-25790
[81] Zhu J, Zhang T S, Ma J, Tay B Y. J. Mater. Res., 2007, 22 : 2448-2453
[82] Guerret C, Bouar Y, Lolseau L. Nature, 1994, 372 : 761-765
[83] Ajcyan P M, Stephan O, Redlich P H. Nature, 1995, 375 : 564-567
[84] Yuan R S, Fu X Z, Wang X C, Liu P, Wu L, Xu Y M, Wang X X, Wang Z Y. Chem. Mater., 2006, 18 : 4700-4705
[85] Smatt J H, Weidenthaler C, Rosenholm J B, Linden M. Chem. Mater., 2006, 18 : 1443-1450
[86] Tan B, Rankin S E. Langmuir, 2005, 21 : 8180-8187
[87] Wolosiuk A, Armagan O, Braun P V. J. Am. Chem. Soc., 2005, 127 : 16356-16357
[88] Chang Y, Teo J J, Zeng H C. Langmuir, 2005, 21 : 1074-1079
[89] Colfen H, Mann S. Angew. Chem., Int. Ed., 2003, 42 : 2350-2365
[90] Naka K, Tanaka Y, Chujo Y. Langmuir, 2002, 18 : 3655-3658
[91] Hiral T, Hariguchi S, Komasawa I. Langmuir, 1997, 13 : 6650-6653
[92] Polshettiwar V, Varma R S. Chem. Soc. Rev., 2008, 37 : 1546-1557
[93] Polshettiwar V, Varma R S. Acc. Chem. Res., 2008, 41 : 629-639
[94] Polshettiwar V, Varma R S. Curr. Opin. Drug Discovery Dev., 2007, 10 : 723-737
[95] Polshettiwar V, Varma R S. J. Org. Chem., 2008, 73 : 7417-7419
[96] Polshettiwar V, Varma R S. J. Org. Chem., 2007, 72 : 7420-7422
[97] Gerbec J A, Magana D, Washington A, Strouse G F. J. Am. Chem. Soc., 2005, 127 : 15791-15800
[98] Sommer W J, Weck M. Langmuir, 2007, 23 : 11991-11995
[99] Gao F, Lu Q Y, Komarneni S. Chem. Mater., 2005, 17 : 856-860
[100] Hu X L, Yu J C, Gong J M. J. Phys. Chem. C, 2007, 111 : 11180-11185
[101] Polshettiwar V, Nadagouda M N, Varma R S. Chem. Commun., 2008, 6318-6320
[102] Polshettiwar V, Nadagouda M N, Varma R S. J. Mat. Chem., 2009, 19 : 2026-2031
[103] Polshettiwar V, Varma R S. Chem. Eur. J., 2009, 15 : 1582-1586
[104] Polshettiwar V, Varma R S. Org. Bio. Chem., 2009, 7 : 37-40
[105] Polshettiwar V, Baruwati B, Varma R S. Green. Chem., 2009, 11 : 127-131
[106] Baruwati B, Nadagouda M N, Varma R S. J. Phys. Chem. C, 2008, 112 : 18399-18404
[107] Polshettiwar V, Baruwati B, Varma R S. ACS Nano, 2009, 3 : 728-736
[108] Dallinger D, Kappe C O. Chem. Rev., 2007, 107 : 2563-2591
[109] Fossard F, Helman A, Julien F H. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17 : 82-83

[1] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[4] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[5] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[6] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[7] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[8] 金士成, 闫爽. 金属氧化物室温气敏材料的结构调控及传感机理[J]. 化学进展, 2021, 33(12): 2348-2361.
[9] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[10] 张旭强, 吕功煊. 光电催化分解水Ⅲ-Ⅴ族半导体光电极薄膜保护策略[J]. 化学进展, 2020, 32(9): 1368-1375.
[11] 朱蕾, 王嘉楠, 刘建伟, 王玲, 延卫. 静电纺丝一维纳米材料在气敏传感器的应用[J]. 化学进展, 2020, 32(2/3): 344-360.
[12] 姚国英, 刘清路, 赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用[J]. 化学进展, 2019, 31(4): 516-535.
[13] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.
[14] 亓媛媛, 李明光, 王宏磊, 张雯, 陈润锋*, 黄维*. 新型空穴传输材料CuSCN在光电器件中的应用[J]. 化学进展, 2018, 30(6): 785-796.
[15] 李里, 董健, 钱卫平*. 纳米碗阵列的制备与应用研究[J]. 化学进展, 2018, 30(2/3): 156-165.
阅读次数
全文


摘要

级次纳米结构材料及其液相合成