English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

无机镍纳米复合材料

林丽娟, 周苇, 郭林   

  1. 北京航空航天大学化学与环境学院 北京 100191
  • 收稿日期:2011-02-01 修回日期:2011-05-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 周苇 E-mail:zhouwei@buaa.edu.cn
  • 基金资助:

    教育部博士点基金项目(No.20101102120045)和北京市自然科学基金项目(No.2113048)资助

Inorganic Nickel-Based Nanocomposites

Lin Lijuan, Zhou Wei, Guo Lin   

  1. School of Chemistry and Environment, Beihang University, Beijing 100191, China
  • Received:2011-02-01 Revised:2011-05-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Zhou Wei E-mail:zhouwei@buaa.edu.cn

纳米复合材料因具有独特的物理、化学性能而成为纳米领域研究的热点。镍纳米材料作为一种重要的过渡金属纳米材料,在磁学、电化学、催化等领域具有广泛的应用。将它与其他金属、氧化物等材料复合,一方面使其固有性质得到明显改善,另一方面利用其他组成和镍基材料的协同作用,可得到具有新特性的异质材料,因此研究镍基纳米复合材料的合成具有重要的科学意义。由于纳米材料的结构不同,其复合位置和复合方式均存在不同,本文按照复合材料的结构特征,分别从核壳型、负载型、多节段纳米线3种类型对镍纳米复合材料的研究进展进行评述,在介绍这些材料的合成方法、结构特点的基础上,综述各种方法、各类结构的优缺点及应用前景,为类似复合材料的合成提供借鉴。

Nanocomposites have become hot issues in the field of nanomaterials due to their unique physical and chemical properties. As an important transitional metal nanomaterial, nickel material has been widely used in magnetics, electrochemistry, catalytic chemistry and other fields. The composites of nickel and other metals or oxides with improved inherent properties would show novel properties by the synergy of composition and nanostructure. Therefore, it is of scientific significance to study the nickel-based nanocomposites. Because of the differences of the combining positions and methods for different components in various nanostructures, the progress of nickel-based nanocomposites is reviewed according to three main structures, which are core-shell structure, supported structure, and multisegment nanowires. Based on the introduction to the various synthetic methods and structures, we summarize the advantages and disadvantages of these methods and composite structures, as well as probable applications. It will be helpful for preparing other similar nanocomposites.

Contents
1 Introduction
2 Core-shell structure nanocomposites
2.1 Core-shell nanostructure
2.2 Coaxial nanocables
3 Supported nickel-nanocomposites
3.1 Nickel-carbon nanocomposites
3.2 Nickel-semiconductor nanocomposites
4 Multisegment nanowires
5 Conclusions

中图分类号: 

()

[1] Sounart T L, Liu J, Voigt J A, Hsu J W P, Spoerke E D, Tian Z, Jiang Y. Adv. Funct. Mater., 2006, 16 : 335-344
[2] Cozzoli P D, Pellegrino T, Manna L. Chem. Soc. Rev., 2006, 35 : 1195-1208
[3] Costi R, Saunders A E, Banin U. Angew. Chem. Int. Ed., 2010, 49 : 4878-4897
[4] Navarro Yerga R M, Alvarez Galván M C, del Valle F, de la Mano J A V, Fierro J L G. ChemSusChem, 2009, 2 : 471-485
[5] Selvan S T, Patra P K, Ang C Y, Ying J Y. Angew. Chem. Int. Ed., 2007, 46 : 2448-2452
[6] Costi R, Saunders A E, Elmalem E, Salant A, Banin U. Nano Lett., 2008, 8 : 637-641
[7] Gao J, Liang G, Cheung J S, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X, Wu E X, Xu B. J. Am. Chem. Soc., 2008, 130 : 11828-11833
[8] Yu H, Chen M, Rice P M, Wang S X, White R L, Sun S. Nano Lett., 2005, 5 : 379-382
[9] Kim H, Achermann M, Balet L P, Hollingsworth J A, Klimov V I. J. Am. Chem. Soc., 2005, 127 : 544-546
[10] Gu H, Zheng R, Zhang X, Xu B. J. Am. Chem. Soc., 2004, 126 : 5664-5665
[11] Buonsanti R, Grillo V, Carlino E, Giannini C, Curri M L, Innocenti C, Sangregorio C, Achterhold K, Parak F G, Agostiano A, Cozzoil P D. J. Am. Chem. Soc., 2006, 128 : 16953-16970
[12] Mokari T, Rothenberg E, Popov I, Costi R, Banin U. Science, 2004, 304 : 1787-1790
[13] Shi W, Zeng H, Sahoo Y, Ohulchanskyy T Y, Ding Y, Wang Z L, Swihart M, Prasad P N. Nano Lett., 2006, 6 : 875-881
[14] Juárez B H, Klinke C, Kornowski A, Weller H. Nano Lett., 2007, 7 : 3564-3568
[15] Yang J, Elim H I, Zhang Q, Lee J Y, Ji W. J. Am. Chem. Soc., 2006, 128 : 11921-11926
[16] Sun Z, Yang Z, Zhou J, Yeung M H, Ni W, Wu H, Wan J. Angew. Chem. Int. Ed., 2009, 48 : 2881-2885
[17] Robinson R D, Sadtler B, Demchenko D O, Erdonmez C K, Wang L W, Alivisatos A P. Science, 2007, 317 : 355-358
[18] Yang J, Duan G, Cai W. J. Phys. Chem. C, 2009, 113 : 3973-3977
[19] Metin O, Mazumder V, Saim O, Sun S. J. Am. Chem. Soc., 2010, 132 : 1468-1469
[20] Tai Y L, Teng H. Chem. Mater., 2004, 16 : 338-342
[21] Respaud M, Amiens C, Chaudret B, Cordente N, Senocq F, Casanove M J. Nano Lett., 2001, 1 : 565-568
[22] Liu C M, Guo L, Wang R M, Deng Y, Xu H B, Yang S. Chem. Commun., 2004, 2726-2727
[23] Liu Z, Li S, Yang Y, Peng S, Hu Z, Qian Y. Adv. Mater., 2003, 15 : 1946-1948
[24] Liu Q, Liu H, Han M, Zhu J, Liang Y, Xu Z, Song Y. Adv. Mater., 2005, 17 : 1995-1999
[25] Ni X, Zhao Q, Zhang D, Zhang X, Zheng H. J. Phys. Chem. C, 2007, 111 : 601-605
[26] Leng Y, Li Y, Li X, Takahashi S. J. Phys. Chem. C, 2007, 111 : 6630-6633
[27] Zhang X, Tu K N, Xie Y H, Tung C H, Xu S. Adv. Mater., 2006, 18 : 1905-1909
[28] Chen Y, Yang F, Dai Y, Wang W, Chen S. J. Phys. Chem. C, 2008, 112 : 1645-1649
[29] Lee I S, Lee N, Park J, Kim B H, Yi Y W, Kim T, Kim T K, Lee I H, Paik S R, Hyeon T. J. Am. Chem. Soc., 2006, 128 : 10658-10659
[30] Ji L, Lin Z, Medford A J, Zhang X. Chem. Eur. J., 2009, 15 : 10718-10722
[31] Bu W, Hua Z, Chen H, Shi J. J. Phys. Chem. B, 2005, 109 : 14461-14464
[32] Wang Z, Lu Q, Kong M, Zhang L. Chem. Eur. J., 2007, 13 : 1463-1470
[33] Zhang D, Liu Z, Han S, Li C, Lei B, Stewart M P, Tour J M, Zhou C. Nano Lett., 2004, 4 : 2151-2155
[34] Zhang H, Ding J, Chow G M, Ran M, Yi J B. Chem. Mater., 2009, 21 : 5222-5228
[35] Song H, Park J C, Bang J U, Lee J, Ko C H. J. Mater. Chem., 2010, 20 : 1239-1246
[36] Park J C, Lee H J, Kim J Y, Park K H, Song H. J. Phys. Chem. C, 2010, 114 : 6381-6388
[37] Son S U, Jang Y, Park J, Na H B, Park H M, Yun H J, Lee J, Hyeon T. J. Am. Chem. Soc., 2004, 126 : 5026-5027
[38] Carroll K J, Calvin S, Ekiert T F, Unruh K M, Carpenter E E. Chem. Mater., 2010, 22 : 2175-2177
[39] Yamauchi T, Tsukahara Y, Sakata T, Mori H, Yanagida T, Kawai T, Wada Y. Nanoscale, 2010, 2 : 515-523
[40] Fu W, Yang H, Chang L, Li M, Bala H, Zou G, Yu Q. Colloids Surf. A, 2005, 262 : 71-75
[41] Xu J, Yang H, Fu W, Fan W, Zhu Q, Li M, Zou G. J. Alloys Compd., 2008, 458 : 119-122
[42] Lee J Y, Hong S H. J. Mater. Res., 2004, 19 : 1669-1675
[43] Lee J Y, Lee J H, Hong S H, Lee Y K, Choi J Y. Adv. Mater., 2003, 15 : 1655-1658
[44] Li L, Reiss P, Protiere M. Small, 2009, 5 : 154-168
[45] Fan F R, Liu D Y, Wu Y F, Duan S, Xie Z X, Jiang Z Y, Tian Z Q. J. Am. Chem. Soc., 2008, 130 : 6949-6951
[46] Lim B, Kobayashi H, Yu T, Wang J, Kim M J, Li Z Y, Rycenga M, Xia Y. J. Am. Chem. Soc., 2010, 132 : 2506-2507
[47] Carbone L, Nobile C, Giorgi M D, Sala F D, Morello G, Pompa P, Hytch M, Snoeck E, Fiore A, Franchini I R, Nadasan M, Silvestre A F, Chiodo L, Kudera S, Cingolani R, Krahne R, Manna L. Nano Lett., 2007, 7 : 2942-2950
[48] Liu H, Owen J S, Alivisatos A P. J. Am. Chem. Soc., 2007, 129 : 305-312
[49] Grzelczak M, Rodríguez-González B, Pérez-Juste J, Liz-Marzán L M. Adv. Mater., 2007, 19 : 2262-2266
[50] Ahmed W, Laarman R P B, Hellenthal C, Kooij E S, Van Silfhout A, Poelsema B. Chem. Commun., 2010, 6711-6713
[51] Yamauchi T, Tsukahara Y, Yamada K, Sakata T, Wada Y. Chem. Mater., 2011, 23 : 75-84
[52] Railsback J G, Johnston-Peck A C, Wang J, Tracy J B. ACS Nano, 2010, 4 : 1913-1920
[53] Zafiropoulou I, Papagelis K, Boukos N, Siokou A, Niarchos D, Tzitzios V. J. Phys. Chem. C, 2010, 114 : 7582-7585
[54] Henkes A E, Vasquez Y, Schaak R E. J. Am. Chem. Soc., 2007, 129 : 1896-1897
[55] Wang J, Johnston-Peck A C, Tracy J B. Chem. Mater., 2009, 21 : 4462-4467
[56] Chiang R K, Chiang R T. Inorg. Chem., 2007, 46 : 369-371
[57] Zhou W, Chen W, Nai J, Yin P, Chen C, Guo L. Adv. Funct. Mater., 2010, 20 : 3678-3683
[58] Lu X, Tuan H Y, Chen Y, Li Z Y, Korgel B A, Xia Y. J. Am. Chem. Soc., 2007, 129 : 1733-1742
[59] Sun Y, Xia Y. Adv. Mater., 2004, 16 : 264-268
[60] Skrabalak S E, Au L, Li X, Xia Y. Nat. Protoc., 2007, 2 : 2182-2190
[61] Sun Y, Xia Y. Science, 2002, 298 : 2176-2179
[62] Sun Y, Mayers B, Xia Y. Adv. Mater., 2003, 15 : 641-646
[63] Chen J, Wiley B, Mclellan J, Xiong Y, Li Z Y, Xia Y. Nano Lett., 2005, 5 : 2058-2062
[64] Cobley C M, Campbell D J, Xia Y. Adv. Mater., 2008, 20 : 748-752
[65] Chen J, Mclellan J M, Siekkinen A, Xiong Y, Li Z Y, Xia Y. J. Am. Chem. Soc., 2006, 128 : 14776-14777
[66] Chen D, Li J, Shi C, Du X, Zhao N, Sheng J, Liu S. Chem. Mater., 2007, 19 : 3399-3405
[67] Chen D, Liu S, Li J, Zhao N, Shi C, Du X, Sheng J. J. Alloys Compd., 2009, 475 : 494-500
[68] Bala T, Bhame S D, Joy P A, Prasad B L V, Sastry M. J. Mater. Chem., 2004, 14 : 2941-2945
[69] Sarkar S, Sinha A K, Pradhan M, Basu M, Negishi Y, Pal T. J. Phys. Chem. C, 2011, 115 : 1659-1673
[70] Zhou W, Zheng K, He L, Wang R, Guo L, Chen C, Han X, Zhang Z. Nano Lett., 2008, 8 : 1147-1152
[71] Zheng X, Yuan S, Tian Z, Yin S, He J, Liu K, Liu L. Chem. Mater., 2009, 21 : 4839-4845
[72] Johnston-Peck A C, Wang J, Tracy J B. ACS Nano, 2009, 3 : 1077-1084
[73] Du N, Zhang H, Chen B, Wu J, Yang D. Nanotechnology, 2007, 18 : 115619-115624
[74] Jang J, Bae J, Choi M, Yoon S H. Carbon, 2005, 43 : 2730-2736
[75] Carny O, Shalev D E, Gazit E. Nano Lett., 2006, 6 : 1594-1597
[76] Zhu W, Wang G, Hong X, Shen X. J. Phys. Chem. C, 2009, 113 : 5450-5454
[77] Takahashi K, Wang Y, Cao G. J. Phys. Chem. B, 2005, 109 : 48-51
[78] Bao J, Xu D, Zhou Q, Xu Z. Chem. Mater., 2002, 14 : 4709-4713
[79] Lonjon A, Laffont L, Demont P, Dantras E, Lacabanne C. J. Phys. Chem. C, 2009, 113 : 12002-12006
[80] Wang Q, Wang G, Han X, Wang X, Hou J G. J. Phys. Chem. B, 2005, 109 : 23326-23329
[81] Narayanan T N, Shaijumon M M, Ajayan P M, Anantharaman M R. Nanoscale Res. Lett., 2010, 5 : 164-168
[82] Li X, Wang Y, Song G, Peng Z, Yu Y, She X, Sun J, Li J, Li P, Wang Z, Duan X. J. Phys. Chem. C, 2010, 114 : 6914-6916
[83] Sun Y, Gates B, Mayers B, Xia Y. Nano Lett., 2002, 2 : 165-168
[84] Sun Y, Mayers B, Herricks T, Xia Y. Nano Lett., 2003, 3 : 955-960
[85] Mckiernan M, Zeng J, Ferdous S, Verhaverbeke S, Leschkies K S, Gouk R, Lazik C, Jin M, Briseno A L, Xia Y. Small, 2010, 6 : 1927-1934
[86] Zhang S, Zeng H C. Chem. Mater., 2010, 22 : 1282-1284
[87] Yoon B, Wai C M. J. Am. Chem. Soc., 2005, 127 : 17174-17175
[88] Cao L, Scheiba F, Roth C, Schweiger F, Cremers C, Stimming U, Fuess H, Chen L, Zhu W, Qiu X. Angew. Chem., 2006, 118 : 5441-5445
[89] Liao S, Holmes K A, Tsaprailis H, Birss V I. J. Am. Chem. Soc., 2006, 128 : 3504-3505
[90] Pham-Huu C, Keller N, Roddatis V V, Mestl G, Schlogl R, Ledoux M J. Phys. Chem. Chem. Phys., 2002, 4 : 514-521
[91] Azadi P, Farnood R, Meier E. J. Phys. Chem. A, 2010, 114 : 3962-3968
[92] Kim H S, Lee H, Han K S, Kim J H, Song M S, Park M S, Lee J Y, Kang J K. J. Phys. Chem. B, 2005, 109 : 8983-8986
[93] Cheng F, Chen J, Gou X. Adv. Mater., 2006, 18 : 2561-2564
[94] Wang L, Liu X, Yang M, Fan Y, Zhan J. Eur. J. Inorg. Chem., 2009, 2009: 897-902
[95] Kim J, Lee J E, Lee J, Yu J H, Kim B C, An K, Hwang Y, Park J G, Shin C H, Kim J, Hyeon T. J. Am. Chem. Soc., 2006, 128 : 688-689
[96] Kwon K W, Shim M. J. Am. Chem. Soc., 2005, 127 : 10269-10275
[97] Selvan S T, Patra P K, Ang C Y, Ying J Y. Angew. Chem. Int. Ed., 2007, 46 : 2448-2452
[98] Liu F, Lee J Y, Zhou W J. Small, 2006, 2 : 121-128
[99] Gudiksen M S, Lauhon L J, Wang J, Smith D C, Lieber C M. Nature, 2002, 415 : 617-620
[100] Salem A K, Searson P C, Leong K W. Nat. Mater., 2003, 2 : 668-671
[101] Demchenko D O, Robinson R D, Sadtler B, Erdonmez C K, Alivisatos A P, Wang L W. ACS Nano, 2008, 2 : 627-636
[102] Menagen G, Mocatta D, Salant A, Popov I, Dorfs D, Banin U. Chem. Mater., 2008, 20 : 6900-6902
[103] Son D H, Hughes S M, Yin Y, Alivisatos A P. Science, 2004, 306 : 1009-1011
[104] Nicewarner-Pea S R, Walton I D, Freeman R G, Reiss B D, He L, Pea D J, Cromer R, Keating C D, Natan M J. Science, 2001, 294 : 137-141
[105] Liang H P, Guo Y G, Hu J S, Zhu C F, Wan L J, Bai C L. Inorg. Chem., 2005, 44 : 3013-3015
[106] Guo Y G, Wan L J, Zhu C F, Yang D L, Chen D M, Bai C L. Chem. Mater., 2003, 15 : 664-667
[107] Chen M, Searson P C. J. Appl. Phys., 2003, 93 : 8253-8255

[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[4] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[10] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[11] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[12] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[13] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[14] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.
[15] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
阅读次数
全文


摘要

无机镍纳米复合材料