English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

多功能磁性纳米粒的合成、修饰及生物医学应用

杜凯, 朱艳红, 徐辉碧, 杨祥良   

  1. 华中科技大学生命科学与技术学院 国家纳米药物工程技术研究中心 武汉 430074
  • 收稿日期:2011-03-01 修回日期:2011-05-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 朱艳红 E-mail:yhzhu@mail.hust.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.308800960)和国家重大科学研究计划(973)项目(No.2007CB935800)资助

Multifunctional Magnetic Nanoparticles: Synthesis, Modification and Biomedical Applications

Du Kai, Zhu Yanhong, Xu Huibi, Yang Xiangliang   

  1. College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2011-03-01 Revised:2011-05-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Zhu Yanhong E-mail:yhzhu@mail.hust.edu.cn

多功能磁性纳米粒由于其独特的性质而受到广泛的关注。磁性纳米粒可以与荧光探针、生物靶向分子或抗肿瘤药物等相结合实现磁性纳米粒的多功能化,因此在多模式成像、癌症的靶向诊断与治疗中有较好的应用前景。本文介绍了磁性纳米粒的合成以及多功能磁性纳米粒的构建方法,重点介绍了核壳型、哑铃型和组合杂化型三种不同类型多功能磁性纳米粒的合成方法。多功能磁性纳米粒通常具有粒径小、超顺磁性以及荧光等独特性质,在此基础上对纳米粒表面进行稳定化和靶向性修饰后即可在多模式成像、特异性靶向药物输送、基因转染等生物医学领域得到应用。最后指出了当前研究中需要解决的问题。

Due to their unique characteristics including superparamagnetic or fluorescent properties and small size comparable to biomolecules, multifunctional magnetic nanoparticles (MFMNPs) have emerged as novel bioimaging, diagnostic and therapeutic agents in biomedical field. The combinations of various nanostructured materials with different propeties and magnetic nanoparticles (MNPs) can offer synergetic multifunctional nanomedical platforms, which make it possible to accomplish multimodal imaging and simultaneous diagnosis and therapy. This review summarizes the synthesis of MNPs and fabrication of MFMNPs, especially focuses on the three types of MFMNPs——core/shell MFMNPs, dumbbell MFMNPs and multicomponent hybrid nanoparticles. Furthermore, to perform real-time monitoring and drug treatment with high accuracy in vivo, stabilizing modification and target modification of MFMNPs are needed to enhance the stability of MFMNPs in physiological environment and localize MFMNPs in the special area in vivo. This paper reviews the general strategies for surface modification of MFMNPs and biomedical applications of these MFMNPs for multimodal imaging, target-specific drug delivery, gene transfection and so on. The development of MFMNPs fusing multiple fluorescent dyes, drugs, and MNPs into a single nanoprobe should provide superior fluorescent, enhanced magnetic resonance imaging (MRI) contrast, and targeted delivery capabilities. Finally, problems to be solved in the current research are also pointed out.

Contents
1 Introduction
2 Chemical synthesis of MNPs
2.1 Iron oxide MNPs
2.2 MFe2O4 MNPs(M=Mn, Co, Ni)
2.3 Alloy MNPs
3 Chemical synthesis of MFMNPs
3.1 Core/shell MFMNPs
3.2 Dumbbell MFMNPs
3.3 Multicomponent hybrid nanoparticles
4 Surface modification of MNPs
4.1 Stabilizing modification
4.2 Target modification
5 Biomedical applications of MFMNPs
5.1 In-vivo behaviour and safty
5.2 Molecular imaging
5.3 Drug delivery
5.4 Gene transfection
5.5 Other applications
6 Conclusions and Outlook

中图分类号: 

()

[1] Gupta A K, Gupta M. Biomaterials, 2005, 26 (18): 3995-4021
[2] Thomas L A, Dekker L, Kallumadil M, Southern P, Wilson M, Nair S P, Pankhurst Q A, Parkin I P. J. Mater. Chem., 2009, 19 (36): 6529-6535
[3] Laurent S, Forge D, Port M, Roch A, Robic C, Elst L V, Muller R N. Chem. Rev., 2008, 108 (6): 2064-2110
[4] Lu A H, Salabas E L, Schuth F. Angew. Chem. Int. Ed., 2007, 46 (8): 1222-1244
[5] Qiao R R, Yang C H, Gao M Y. J. Mater. Chem., 2009, 19 (35): 6274-6293
[6] Sun S H, Zeng H, Robinson D B, Raoux S, Rice P M, Wang S X, Li G. J. Am. Chem. Soc., 2004, 126 (1): 273-279
[7] Sun S H, Anders S, Thomson T, Baglin J E E, Toney M F, Hamann H F, Murray C B, Terris B D. J. Phys. Chem. B, 2003, 107 (23): 5419-5425
[8] Sun S H, Murray C B, Weller D, Folks L, Moser A. Science, 2000, 287 (5460): 1989-1992
[9] Hou Y L, Kondoh H, Kogure T, Ohta T. Chem. Mater., 2004, 16 (24): 5149-5152
[10] Sun S H. Adv. Mater., 2006, 18 (4): 393-403
[11] Hou Y L, Kondoh H, Che R C, Takeguchi M, Ohta T. Small, 2006, 2 (2): 235-238
[12] Wang C, Hou Y, Kim J, Sun S H. Angew. Chem. Int. Ed., 2007, 46 (33): 6333-6335
[13] Hütten A, Sudfeld D, Ennen I, Reiss G, Wojczykowski K, Jutzi P. J. Magn. Magn. Mater., 2005, 293 (1): 93-101
[14] Desvaux C, Amiens C, Fejes P, Renaud P, Respaud M, Lecante P, Snoeck E, Chaudret B. Nat. Mater., 2005, 4 (10): 750-753
[15] Chaubey G S, Barcena C, Poudyal N, Rong C B, Gao J M, Sun S H, Liu J P. J. Am. Chem. Soc., 2007, 129 (23): 7214-7215
[16] Wei X W, Zhu G X, Liu Y J, Ni Y H, Song Y, Xu Z. Chem. Mater., 2008, 20 (19): 6248-6253
[17] Michalet X, Pinaud F F, Bentolila L A, Tsay J M, Doose S, Li J J, Sundaresan G, Wu A M, Gambhir S S, Weiss S. Science, 2005, 307 (5709): 538-544
[18] Talanov V S, Regino C A S, Kobayashi H, Bernardo M, Choyke P L, Brechbiel M W. Nano Lett., 2006, 6 (7): 1459-1463
[19] Hu M, Chen J, Li Z Y, Au L, Hartland G V, Li X, Marquez M, Xia Y. Chem. Soc. Rev., 2006, 35 (11): 1084-1094
[20] Santra S, Yang H, Holloway P H, Stanley J T, Mericle R A. J. Am. Chem. Soc., 2005, 127 (6): 1656-1657
[21] Gao J H, Liang G L, Cheung J S, Pan Y, Kuang Y, Zhao F, Zhang B, Zhang X X, Wu E X, Xu B. J. Am. Chem. Soc., 2008, 130 (35): 11828-11833
[22] Xu Z C, Hou Y L, Sun S H. J. Am. Chem. Soc., 2007, 129 (28): 8698-8699
[23] Gao J H, Zhang B, Gao Y, Pan Y, Zhang X X, Xu B. J. Am. Chem. Soc., 2007, 129 (39): 11928-11935
[24] Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Angew. Chem. Int. Ed., 2008, 47 (44): 8438-8441
[25] Seo W S, Lee J H, Sun X, Suzuki Y, Mann D, Liu Z, Terashima M, Yang P C, McConnell M V, Nishimura D G. Nat. Mater., 2006, 5 (12): 971-976
[26] Murray C B, Kagan C R, Bawendi M G. Annu. Rev. Mater. Sci., 2000, 30 (1): 545-610
[27] Gu H W, Zheng R K, Zhang X X, Xu B. J. Am. Chem. Soc., 2004, 126 (18): 5664-5665
[28] Yu H, Chen M, Rice P M, Wang S X, White R L, Sun S H. Nano Lett., 2005, 5 (2): 379-382
[29] Wang C, Daimon H, Sun S H. Nano Lett., 2009, 9 (4): 1493-1496
[30] Choi S H, Na H B, Park Y I, An K, Kwon S G, Jang Y, Park MH, Moon J, Son J S, Song I C, Moon W K, Hyeon T. J. Am. Chem. Soc., 2008, 130 (46): 15573-15580
[31] Gu H W, Yang Z M, Gao J H, Chang C K, Xu B. J. Am. Chem. Soc., 2004, 127 (1): 34-35
[32] Shi W L, Zeng H, Sahoo Y, Ohulchanskyy T Y, Ding Y, Wang Z L, Swihart M, Prasad P N. Nano Lett., 2006, 6 (4): 875-881
[33] Kim J, Lee JE, Lee SH, Yu JH, Lee J H, Park TG, Hyeon T. Adv. Mater., 2008, 20 (3): 478-483
[34] Park J H, von Maltzahn G, Ruoslahti E, Bhatia S N, Sailor M J. Angew. Chem. Int. Ed., 2008, 47 (38): 7284-7288
[35] Xie H Y, Zuo C, Liu Y, Zhang Z L, Pang D W, Li X L, Gong J P, Dickinson C, Zhou W Z. Small, 2005, 1 (5): 506-509
[36] Fan H M, Olivo M, Shuter B, Yi J B, Bhuvaneswari R, Tan H R, Xing G C, Ng C T, Liu L, Lucky S S, Bay B H, Ding J. J. Am. Chem. Soc., 2010, 132 (42): 14803-14811
[37] Yang H, Zhuang Y M, Hu H, Du X X, Zhang C X, Shi X Y, Wu H X, Yang S P. Adv. Funct. Mater., 2010, 20 (11): 1733-1741
[38] Lee J, Jun Y, Yeon S, Shin J, Cheon J. Angew. Chem. Int. Ed., 2006, 45 : 8160-8162
[39] Xu Y, Karmakar A, Wang D Y, Mahmood M W, Watanabe F, Zhang Y B, Fejleh A, Fejleh P, Li Z R, Kannarpady G, Ali S, Biris A R, Biris A S. J. Phys. Chem. C, 2010, 114 (11): 5020-5026
[40] Hao R, Xing R J, Xu Z C, Hou Y L, Gao S, Sun S H. Adv. Mater., 2010, 22 (25): 2729-2742
[41] Frey N A, Peng S, Cheng K, Sun S H. Chem. Soc. Rev., 2009, 38 (9): 2532-2542
[42] Yee C, Kataby G, Ulman A, Prozorov T, White H, King A, Rafailovich M, Sokolov J, Gedanken A. Langmuir, 1999, 15 (21): 7111-7115
[43] Ma D, Guan J, Dénommée S, Enright G, Veres T, Simard B. Chem. Mater., 2006, 18 (7): 1920-1927
[44] Kim J, Park S, Lee J E, Jin S M, Lee J H, Lee I S, Yang I, Kim J S, Kim S K, Cho M H, Hyeon T. Angew. Chem. Int. Ed., 2006, 45 (46): 7754-7758
[45] Xie J, Xu C J, Xu Z C, Hou Y L, Young K L, Wang S X, Pourmand N, Sun S H. Chem. Mater., 2006, 18 (23): 5401-5403
[46] Peng S, Wang C, Xie J, Sun S H. J. Am. Chem. Soc., 2006, 128 (33): 10676-10677
[47] Thünemann A F, Schütt D, Kaufner L, Pison U, Mhwald H. Langmuir, 2006, 22 (5): 2351-2357
[48] Jung H I, Kettunen M I, Davletov B, Brindle K M. Bioconjugate Chem., 2004, 15 (5): 983-987
[49] Sun C, Sze R, Zhang M Q. Journal of Biomedical Materials Research Part A, 2006, 78 (3): 550-557
[50] Kohler N, Sun C, Fichtenholtz A, Gunn J, Fang C, Zhang M Q. Small, 2006, 2 (6): 785-792
[51] Montet X, Funovics M, Montet-Abou K, Weissleder R, Josephson L. J. Med. Chem., 2006, 49 (20): 6087-6093
[52] Veiseh O, Sun C, Gunn J, Kohler N, Gabikian P, Lee D, Bhattarai N, Ellenbogen R, Sze R, Hallahan A, Olson J, Zhang M Q. Nano Lett., 2005, 5 (6): 1003-1008
[53] Veiseh O, Gunn J W, Zhang M Q. Adv. Drug Delivery Rev., 2010, 62 (3): 284-304
[54] Berry C, Charles S, Wells S, Dalby M, Curtis A. Int. J. Pharm., 2004, 269 (1): 211-225
[55] Gupta A, Curtis A. Biomaterials, 2004, 25 (15): 3029-3040
[56] Kresse M, Wagner S, Pfefferer D, Lawaczeck R, Elste V, Semmler W. Magn. Reson. Med., 1998, 40 (2): 236-242
[57] Leuschner C, Kumar C S S R, Hansel W, Soboyejo W, Zhou J, Hormes J. Breast Cancer Research and Treatment, 2006, 99 (2): 163-176
[58] Xie H, Zhu Y H, Jiang W L, Zhou Q, Yang H, Gu N, Zhang Y, Xu H B, Yang X L. Biomaterials, 2011, 32 (2): 495-502
[59] Toma A, Otsuji E, Kuriu Y, Okamoto K, Ichikawa D, Hagiwara A, Ito H, Nishimura T, Yamagishi H. British Journal of Cancer, 2005, 93 (1): 131-136
[60] Cirstoiu-Hapca A, Bossy-Nobs L, Buchegger F, Gurny R, Delie F. Int. J. Pharm., 2007, 331 (2): 190-196
[61] Huh Y M, Jun Y W, Song H T, Kim S, Choi J S, Lee J H, Yoon S, Kim K S, Shin J S, Suh J S, Cheon J. J. Am. Chem. Soc., 2005, 127 (35): 12387-12391
[62] Na H B, Song I C, Hyeon T. Adv. Mater., 2009, 21 (21): 2133-2148
[63] Liu Z, Cai W B, He L N, Nakayama N, Chen K, Sun X M, Chen X Y, Dai H J. Nat. Nanotechnol., 2007, 2 (1): 47-52
[64] Geng Y, Dalhaimer P, Cai S S, Tsai R, Tewari M, Minko T, Discher D E. Nat. Nanotechnol., 2007, 2 (4): 249-255
[65] Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay W S, Subramani K, Laurent S. Chem. Rev., 2011, 111 (2): 253-280
[66] Weissleder R, Stark D, Engelstad B, Bacon B, Compton C, White D, Jacobs P, Lewis J. American Journal of Roentgenology, 1989, 152 (1): 167-173
[67] Shubayev V I, Pisanic T R, Jin S H. Adv. Drug Delivery Rev., 2009, 61 (6): 467-477
[68] Weissleder R, Mahmood U. Radiology, 2001, 219 (2): 316-333
[69] Catana C, Wu Y B, Judenhofer M S, Qi J Y, Pichler B J, Cherry S B. Journal of Nuclear Medicine, 2006, 47 (12): 1968-1976
[70] Jennings L E, Long N J. Chem. Commun., 2009, 3511-3524
[71] Sun C, Lee J S H, Zhang M Q. Adv. Drug Delivery Rev., 2008, 60 (11): 1252-1265
[72] Lee J, Huh Y, Jun Y, Seo J, Jang J, Song H, Kim S, Cho E, Yoon H, Suh J. Nat. Med., 2006, 13 (1): 95-99
[73] Li L L, Li H B, Chen D, Liu H Y, Tang F Q, Zhang Y Q, Ren J, Li Y. J. Nanosci. Nanotechnol., 2009, 9 (4): 2540-2545
[74] Roullier V, Grasset F, Boulmedais F, Artzner F, Cador O, Marchi-Artzner V. Chem. Mater., 2008, 20 (21): 6657-6665
[75] Gao J H, Zhang W, Huang P B, Zhang B, Zhang X X, Xu B. J. Am. Chem. Soc., 2008, 130 (12): 3710-3711
[76] Jarrett B R, Gustafsson B, Kukis D L, Louie A Y. Bioconjugate Chem., 2008, 19 (7): 1496-1504
[77] Lee H Y, Li Z B, Chen K, Hsu A R, Xu C J, Xie J, Sun S H, Chen X Y. Journal of Nuclear Medicine, 2008, 49 (8): 1371-1379
[78] Sharma P, Brown S C, Bengtsson N, Zhang Q, Walter G A, Grobmyer S R, Santra S, Jiang H, Scott E W, Moudgil B M. Chem. Mater., 2008, 20 (19): 6087-6094
[79] Popovtzer R, Agrawal A, Kotov N A, Popovtzer A, Balter J, Carey T E, Kopelman R. Nano Lett., 2008, 8 (12): 4593-4596
[80] Lee J, Yang J, Ko H, Oh S, Kang J, Son J, Lee K, Lee S W, Yoon H G, Suh J S, Huh Y M, Haam S. Adv. Funct. Mater., 2008, 18 (2): 258-264
[81] Mornet S, Vasseur S, Grasset F, Veverka P, Goglio G, Demourgues A, Portier J, Pollert E, Duguet E. Prog. Solid State Chem., 2006, 34 (2/4): 237-247
[82] Liu T Y, Hu S H, Liu D M, Chen S Y, Chen I W. Nano Today, 2009, 4 (1): 52-65
[83] Zhang J, Misra R. Acta Biomater., 2007, 3 (6): 838-850
[84] Xu C J, Wang B D, Sun S H. J. Am. Chem. Soc., 2009, 131 (12): 4216-4217
[85] Cheng K, Peng S, Xu C J, Sun S H. J. Am. Chem. Soc., 2009, 131 (30): 10637-10644
[86] Santra S, Kaittanis C, Grimm J, Perez J M. Small, 2009, 5 (16): 1862-1868
[87] Yiu H H P, Niu H J, Biermans E, van Tendeloo G, Rosseinsky M J. Adv. Funct. Mater., 2010, 20 (10): 1599-1609
[88] Hassan M, Othman E, Hornung D, Al-Hendy A. Adv. Drug Delivery Rev., 2009, 61 (10): 822-835
[89] Mah C, Fraites J T J, Zolotukhin I, Song S, Flotte T R, Dobson J, Batich C, Byrne B J. Mol. Ther., 2002, 6 (1): 106-112
[90] Pan B F, Cui D X, Sheng Y, Ozkan C, Gao F, He R, Li Q, Xu P, Huang T. Cancer Research, 2007, 67 (17): 8156-8163
[91] Kievit F M, Veiseh O, Bhattarai N, Fang C, Gunn J W, Lee D, Ellenbogen R G, Olson J M, Zhang M. Adv. Funct. Mater., 2009, 19 (14): 2244-2251
[92] Gao J H, Li L, Ho P L, Mak G C, Gu H W, Xu B. Adv. Mater., 2006, 18 (23): 3145-3148
[93] Gu H W, Ho P L, Tsang K W T, Wang L, Xu B. J. Am. Chem. Soc., 2003, 125 (51): 15702-15703
[94] Xu C J, Xu K M, Gu H W, Zhong X F, Guo Z H, Zheng R K, Zhang X X, Xu B. J. Am. Chem. Soc., 2004, 126 (11): 3392-3393
[95] Leroux J C. Nat. Nano, 2007, 2 (11): 679-684
[96] Kell A J, Stewart G, Ryan S, Peytavi R, Boissinot M, Huletsky A, Bergeron M G, Simard B. ACS Nano, 2008, 2 (9): 1777-1788
[97] Gu H, Ho P, Tsang K, Yu C, Xu B. Chem. Commun., 2003, 1966-1967
[98] Xu C J, Xu K M, Gu H W, Zheng R K, Liu H, Zhang X X, Guo Z H, Xu B. J. Am. Chem. Soc., 2004, 126 (32): 9938-9939
[99] Wang L, Yang Z M, Gao J H, Xu K M, Gu H W, Zhang B, Zhang X X, Xu B. J. Am. Chem. Soc., 2006, 128 (41): 13358-13359
[100] Gu H W, Xu K M, Yang Z M, Chang C K, Xu B. Chem. Commun., 2005, 4270-4272
[101] Gao J H, Liang G L, Zhang B, Kuang Y, Zhang X X, Xu B. J. Am. Chem. Soc., 2007, 129(5): 1428-1433

[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[5] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[6] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[7] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[8] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[9] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[10] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[11] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[12] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[13] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[14] 胡强强, 郭和泽, 窦红静. ZIF-8纳米颗粒的粒径调控及生物医学应用[J]. 化学进展, 2020, 32(5): 656-664.
[15] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.