English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

Ⅰ-Ⅲ-Ⅵ族半导体纳米晶

陈冰昆, 钟海政, 邹炳锁   

  1. 北京理工大学材料学院 纳米光子学材料与技术实验室 北京 100081
  • 收稿日期:2011-02-01 修回日期:2011-03-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 钟海政 E-mail:hzzhong@bit.edu.cn
  • 基金资助:

    国家重大科学研究计划(973)项目(No.2011CB933600),国家自然科学基金项目(No.51003005)和北京理工大学优秀青年教师资助计划项目(No.2010Y0913)资助

Ⅰ-Ⅲ-Ⅵ Semiconductor Nanocrystals

Chen Bingkun, Zhong Haizheng, Zou Bingsuo   

  1. Lab of Nanophotonics Materials and Technology, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
  • Received:2011-02-01 Revised:2011-03-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Haizheng Zhong E-mail:hzzhong@bit.edu.cn

半导体纳米晶是近年来发展起来的一类新型功能材料,因其独特的量子限域效应和光电性质,在太阳电池、发光二极管、光电探测器、生物标记、非线性光学等领域中具有潜在的应用。与目前研究比较多的Ⅱ-Ⅵ和Ⅳ-Ⅵ族纳米晶相比,Ⅰ-Ⅲ-Ⅵ族半导体纳米晶,不含镉和铅等重金属元素,具有毒性小、带隙窄、光吸收系数大、Stokes位移大、自吸收小以及发光波长在近红外区等特点,有望成为新一代低成本太阳电池和低毒荧光量子点生物标记材料, 还可用于发光二极管和光电探测等领域。因此,Ⅰ-Ⅲ-Ⅵ族半导体纳米晶的合成、性质及应用研究成为近期纳米晶研究领域的热点之一。本文将综述Ⅰ-Ⅲ-Ⅵ族半导体纳米晶的研究进展,着重介绍其制备方法、光学性质及其在生物标记、太阳电池等领域的应用。

Semiconductor nanocrystals have received considerable attention due to their size-tunable spectroscopic properties and their applications in solar cells, light-emitting diodes, photodetector, biolabeling and nonlinear optical devices. Among various materials, nanocrystals of Ⅰ-Ⅲ-Ⅵ compounds (CuInS2, AgInS2,CuInSe2 and CuInxGa1-xSe2, etc.) have been treated as not only alternative low toxic luminescent materials for bio-imaging, and light-emitting diodes, but also suitable ink materials for solution process solar cells due to their unique properties such as tunable bandgaps, high absorption coefficient, large Stokes shifts. Recently, synthesis of Ⅰ-Ⅲ-Ⅵ nanocrystals has been extensively studied, resulting in various methods including precursor decomposition, hot injection and solvothermal methods. The developments of synthetic chemistry also provide high quality materials with controlled size, shape and compositions. This opens up the possibility to investigate their optical properties and explore their functional applications. The physical properties, especially their photoluminescence and electrochemical properties have been investigated to elucidate their size-dependent quantum confinement. Several specific characteristics were observed and demonstrated, providing important information for their applications. Recent works also reported several initial results of functionalization and devices applications, which are promising for future study. In this review, we provide an in-depth discussion of current progress and problems of colloidal Ⅰ-Ⅲ-Ⅵ semiconductor nanocrystals with an emphasis on the developing Ⅰ-Ⅲ-Ⅵ nanocrystals such as materials preparations, spectroscopic study and application explorations.

Contents
1 Introduction
2 Synthetic chemistry
2.1 Synthetic methods
2.2 Phase control
2.3 Composition control
2.4 Core/shell nanocrystals
3 Quantum-confinement effects and optical properties
3.1 Size-dependent quantum confinement effects
3.2 Optical properties
4 Applications
4.1 Biolabeling and biosensing
4.2 Opt-electronic devices
5 Summary and perspective

中图分类号: 

()

[1] Scholes G D. Adv. Funct. Mater, 2008, 18 : 1157-1172
[2] Rogach A L. Semiconductor Nanocrystal Quantum Dots. Synthesis, Assembly, Spectroscopy and Applications, New York: Springer, 2008. 1-73
[3] Bera D, Qian L, Tseng T K, Holloway P H. Materials, 2010, 3 : 2260-2345
[4] Zhong H Z, Mirkovic T, Scholes G D. Comprehsive Nanoscience and Technology, Elsevier, Volume 5, Chapter 5.06, 2011. 153-201
[5] Deng Z T, Cao L, Tang F G, Zou B S. J. Phys. Chem. B, 2005, 109 : 16671-16675
[6] Li Y C, Zhong H Z, Li R, Zhou Y, Yang C H, Li Y F. Adv. Funct. Mater., 2006, 16 : 1705-1716
[7] Zhong H Z, Zhou Y, Yang Y, Yang C H, Li Y F. J. Phys. Chem. C, 2007, 111 : 6538-6543
[8] Zeng R S, Zhang T T, Liu J C, Hu S, Wan Q, Liu X M, Peng Z W, Zou B S. Nanotechnology, 2009, 20: art. no. 095102
[9] Zhong H Z, Nagy M, Jones M, Scholes G D. J. Phys. Chem. C, 2009, 113: 10465-10470
[10] He J, Zhong H Z, Scholes G D. Phys. Rev. Lett., 2010, 105: art. no. 046601
[11] Zhong H Z, Scholes G D. J. Am. Chem. Soc., 2009, 131 : 9170-9171
[12] Zeng R S, Rutherford M, Xie R G, Zou B S, Peng X G. Chem. Mater., 2010, 22 : 2017-2113
[13] Jaffe J E, Zunger A. Physical Review B, 1984, 29 : 1882-1906
[14] 周少雄(Zhou X X), 方玲(Fang L). 太阳能热电池及其应用专题(Solar Thermal Cell and Its Application Project), 2007, 36 : 849-852
[15] Persson C, Zunger A. Phys. Rev. Lett., 2003, 91: art. no. 266401
[16] Hetzer M J, Strzhemechny Y M, Gao M, Contreras M A, Zunger A, Brillson L J. Appl. Phys. Lett., 2005, 86: art. no. 162105
[17] Omata T, Nose K, Soma Y, Otsuka-Yao-Matsuo S. J. Appl. Phys., 2009, 105 : art. no. 073106
[18] Castro S L, Bailey S G, Raffaelle R P, Banger K K, Hepp A F. Chem. Mater., 2003, 15 : 3142-3147
[19] Castro S L, Bailey S G, Raffaelle R P, Banger K K, Hepp A F. J. Phys. Chem. B, 2004, 108 : 12429-12435
[20] Ng M T, Boothroyd C B, Vittal J J. J. Am. Chem. Soc., 2006, 128 : 7118-7119
[21] Tian L, Elim H I, Ji W, Vittal J J. Chem. Commun., 2006, 4276-4278
[22] Zhong H Z, Zhou Y, Ye M F, He Y J, Ye J P, He C, Yang C H, Li Y F. Chem. Mater., 2008, 20 : 6434-6443
[23] Zhong H Z, Lo S S, Mirkovic T, Li Y C, Ding Y Q, Li Y F, Scholes G D. ACS Nano, 2010, 4 : 5253-5262
[24] Nairn J J, Shapiro P J, Twamley B, Pounds T, Wandruszka R, Fletcher R, Williams M, Wang C, Norton M G. Nano Lett., 2006, 6 : 1218-1223
[25] Gardner J S, Shurdha E, Wang C M, Lau L D, Rodriguez R G, Pak J J. J. Nanopart. Res., 2008, 10 : 633-641
[26] Li B, Xie Y, Huang J X, Qian Y T. Adv. Mater., 1999, 11 : 1456-1459
[27] Xiao J P, Xie Y, Xiong Y J, Tang R, Qian Y T. J. Mater. Chem., 2001, 11 : 1417-1420
[28] Du W M, Qian X F, Yin J, Gong Q. Chem. Eur. J., 2007, 13 : 8840-8846
[29] Li T L, Teng H. J. Mater. Chem., 2010, 20 : 3656-3664
[30] Malik M A, O'Brien P, Revaprasadu N. Adv. Mater., 1999, 11 : 1441-1444
[31] Xie R G, Rutherford M, Peng X G. J. Am. Chem. Soc., 2009, 131 : 5691-5697
[32] Pan D C, An L J, Sun Z M, Hou W, Yang Yang Y, Yang Z Z, Lu Y F. J. Am. Chem. Soc., 2008, 130 : 5620-5621
[33] Koo B, Patel R N, Korgel B A. Chem. Mater., 2009, 21 : 1962-1966
[34] Allen P M, Bawendi M G. J. Am. Chem. Soc., 2008, 130 : 9240-9241
[35] Guo Q J, Kim S J, Kar M, Shafarman W N, Birkmire R W, Stach E A, Agrawal R, Hillhouse H W. Nano Lett., 2008, 8 : 2982-2987
[36] Tang J, Hinds S, Kelley S O, Sargent E H. Chem. Mater., 2008, 20 : 6906-6910
[37] Panthani M G, Akhavan V, Goodfellow B, Schmidtke J P, Dunn L, Dodabalapur A, Barbara P F, Korgel B A. J. Am. Chem. Soc., 2008, 130 : 16770-16777
[38] Koo B, Patel R N, Korgel B A. J. Am. Chem. Soc., 2009, 131 : 3134-3135
[39] Connor S T, Hsu C M, Weil B D, Aloni S, Cui Y. J. Am. Chem. Soc., 2009, 131 : 4962-4966
[40] Choi S H, Kim E G, Hyeon T. J. Am. Chem. Soc., 2006, 128 : 2520-2521
[41] Hirpo W, Dhingra S, Sutorik A C, Kanatzidis M G. J. Am. Chem. Soc., 1993, 115 : 1597-1599
[42] Tian L, Ng M T, Venkatram N, Ji W, Vittal J J. Crystal Growth & Design, 2010, 10 : 1237-1242
[43] Sun C, Gardner J S, Long G, Bajracharya C, Thurber A, Punnoose A, Rodriguez R G, Pak J J. Chem. Mater., 2010, 22 : 2699
[44] Torimoto T, Adachi T, Okazaki K, Sakuraoka M, Shibayama T, Ohtani B, Kudo A, Kuwabata S. J. Am. Chem. Soc., 2007, 129 : 12388-12389
[45] Ogawa T, Kuzuya T, Hamanaka, Y, Sumiyama K, Sumiyama K. J. Mater. Chem., 2010, 20 : 2226-2231
[46] Jin Y, Tang K B, An C H, Huang L Y. Journal of Crystal Growth, 2003, 253 : 429-434
[47] Liu Q C, Tang K B. Chin. J. Chem. Phys., 2006, 19 : 335-340
[48] Qi Y X, Tang K B, Zeng S Y, Zhou W W. Micro. Meso. Mater., 2008, 114 : 395-400
[49] Gou X L, Cheng F Y, Shi Y H, Zhang L, Peng S G, Chen J, Shen P. J. Am. Chem. Soc., 2006, 128 : 7222-7229
[50] Yang Y H, Chen Y T. J. Phys. Chem. B, 2006, 110 : 17370-17374
[51] Wang D S, Zheng W, Hao C H, Peng Q, Li Y D. Chem. Commun., 2008, 2556-2558
[52] Wu C C, Shiau C Y, Ayele D W, Su W N, Cheng M Y, Chiu C Y, Hwang B J. Chem. Mater., 2010, 22 : 4185-4190
[53] Murray C B, Noms D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115 : 8706-8715
[54] Zhong H Z, Li Y C, Ye M F, Zhu Z Z, Zhou Y, Yang C H, Li Y F. Nanotechnology, 2007, 18 : art. no. 025602
[55] Zhong H Z, Wang Z B, Borico E, Lu Z H, van Veggel F, Scholes G D. J. Phys. Chem. C, 2011, 115: 12396-12402
[56] Wooten A J, Werder D J, Williams D J, Casson J L, Hollingsworth J A. J. Am. Chem. Soc., 2009, 131 : 16177-16188
[57] Kruszynska M, Borchert H, Parisi J, Kolny-Olesiak J. J. Am. Chem. Soc., 2010, 132 : 15976-15986
[58] Peng H, Schoen D T, Meister S, Zhang X F, Cui Y. J. Am. Chem. Soc., 2007, 129 : 34-35
[59] Xu J, Lee C S, Tang Y B, Chen X, Chen Z H, Zhang W J, Lee S T, Zhang W, Yang Z. ACS Nano, 2010, 4 : 1845-1850
[60] Xu J, Luan C Y, Tang Y B, Chen X, Zapien J A, Zhang W J, Kwong H L, Meng X M, Lee S T, Lee C S. ACS Nano, 2010, 4 : 6064-6070
[61] Binsma J J M, Giling L J, Bloem J. J. Cryst. Growth, 1980, 50 : 429
[62] Batabyal S K, Tian L, Venkatram N, Ji W, Vittal J J. J. Phys. Chem. C, 2009, 113 : 15037-15042
[63] Nose K, Soma Y, Omata T, Otsuka-Yao-Matsuo S. Chem. Mater., 2009, 21 : 2607-2613
[64] Qi Y X, Liu Q C, Tang K B, Liang Z H, Ren ZB, Liu X M. J. Phys. Chem. C, 2009, 113 : 3939-3944
[65] Norako M E, Brutchey R L. Chem. Mater., 2010, 22 : 1613-1615
[66] Wang J J, Wang Y Q, Cao F F, Guo Y G, Wan L J. J. Am. Chem. Soc., 2010, 132 : 12218-12221
[67] Feng Z Y, Dai P C, Ma X C, Zhan J H, Lin Z J. Appl. Phys. Lett., 2010, 96 : art. no. 013104
[68] 雷永泉(Lei Y C), 万群(Wan Q), 石永康(Shi Y K). 新能源材料(New Energy Materials). 天津. 天津大学出版社(Tianjin. Tianjin University Press ), 2000. 307-310
[69] Pan D C, Wang X L, Zhou Z H, Chen W, Xu C L, Lu Y F. Chem. Mater., 2009, 21 : 2489-2493
[70] Pan D C, Wang D, Wang X L, Xiao Q F, Chen W, Xu C L, Yang Z Z, Lu Y F. Chem. Commun., 2009, 4221-4223
[71] Wang X L, Pan D C, Wang D, Low C Y, Rice L, Han J Y, Lu Y F. J. Phys. Chem. C, 2010, 114 : 17293-17297
[72] Chiang M Y, Chang, S H, Chen C Y, Yuan F W, Tuan H Y. J. Phys. Chem. C, 2011, 115 : 1592-1599
[73] Uematsu T, Doi T, Torimoto T, Kuwabata S. J. Phys. Chem. Lett., 2010, 1 : 3283-3287
[74] Chen L J, Liao J D, Chuang Y J, Fu Y S. J. Am. Chem. Soc., 2011, 133 : 3704-3707
[75] Nakamura H, Kato W, Uehara M, Nose K, Omata T, Otsuka-Yao-Matsuo S, Miyazaki M, Maeda H. Chem. Mater., 2006, 18 : 3330-3335
[76] Li L, Daou T J, Texier I, Chi T T K, Liem N Q, Reiss P. Chem. Mater., 2009, 21 : 2422-2429
[77] Li L, Pandey A, Werder D J, Khanal B P, Pietryga J M, Klimov V I. J. Am. Chem. Soc., 2011, 133 : 1176-1179
[78] Torimoto T, Ogawa S, Adachi T, Kameyama T, Okazaki K, Shibayama T, Kudoc A, Kuwabata S. Chem. Commun., 2010, 2082-2084
[79] Cassette E, Pons T, Boue C, Helle M, Bezdetnaya L, Marchal F, Dubertre B. Chem. Mater., 2010, 22 : 6117-6124
[80] Hamanaka Y, Kuzuya T, Sofue T, Kino T, Ito K, Sumiyama K. Chemical Physics Letters, 2008, 466 : 176-180
[81] Nose K, Fujita N, Omata T, Otsuka-Yao-Matsuo S. J. Phys. D, 2009, 165 : art. no. 012028
[82] Hamanaka Y, Ogawa T, Tsuzuki M. J. Phys. Chem. C, 2011, 115 : 1786-1792
[83] Elim H I, Ji W, Ng M T, Vital J J. Appl. Phys. Lett., 2007, 90 : art. no. 033106
[84] Venkatram N, Batabyal S, Tian L, Vital J J, Ji W. Appl. Phys. Lett., 2009, 95 : art. no. 201109
[85] Pons T, Pic E, Lequeux N, Cassette E, Bezdetnaya L, Guillemin F, Marchal F, Dubertret B. ACS Nano, 2010, 4 : 2531-2538
[86] 齐翠茶(Qi C C), 何子剑(He Z J), 谢海燕(Xie H Y). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2010, 26 (6): 951-956
[87] Yong K T, Roy I, Hu R, Ding H, Cai H X, Zhu J, Zhang X H, Bergey E J, Prasad P N. Integr. Biol., 2010, 2 : 121-129
[88] Uematsu T, Taniguchi S, Torimotobc T, Kuwabata S. Chem. Commun., 2009, 7485-7487
[89] Talapin D V, Lee J S, Kovalenko M V, Shevchenko E V. Chem. Rev., 2010, 110 : 389-458
[90] Hillhouse H W, Beard M C. Current Opinion in Colloid & Interface Science, 2009, 14 : 245-259
[91] Akhavan V A, Panthani, M G, Goodfellow B W, Reid D K, Korgel B A. Opt. Express, 2010, 18 : 411-420
[92] Akhavan V A, Goodfellow B W, Panthani M G, Reid D K, Hellebusch D J, Adachi T, Korgel B A. Enery Eviron. Sci., 2010, 3 : 1600-1606
[93] Guo Q J, Ford G M, Hillhouse H W, Agrawal R. Nano Lett., 2009, 9 : 3060-3065
[94] Li L, Coates N, Moses D. J. Am. Chem. Soc., 2010, 132 : 22-23
[95] Arici E, Sariciftci N S, Meissner D. Adv. Funct. Mater., 2003, 13 : 165-171
[96] Kuo K T, Liu D M, Chen S Y, Lin C C. J. Mater. Chem., 2009, 19 : 6780-6788
[97] Zhang Y, Xie C, Su H, Liu J, Pickering S, Wang Y Q, Yu W W, Wang J K, Wang Y, Dhahm J, Dellas N, Mohney S E, Xu J. Nano Lett., 2010, 11 : 329-332
[98] Tan Z A, Zhang Y, Xie C, Su H P , Liu J, Zhang C F,Dellas N, Mohney S E, Wang Y Q, Wang J K, Xu J.Adv. Mater.,2011, 23: 3553-3558
[99] Zhang J, Xie R G, Yang W S. Chem. Mater.,2011, 23: 3357-3361
[100] Feng J, Sun M, Yang F, Yang X R. Chem. Commun., 2011, 47: 6422-6424
[101] Sarkar S, Karan N S, Pradhan N. Angew. Chem. Int.Ed., 2011,50: 1-6
[102] Tang X S, Cheng W L, Choo E S G, Xue J M. Chem. Commun., 2011, 47: 5217-5219
[103] Tang X S, Yu K, Xu Q H, Choo E S G, Goh G K L, Xue J M. J. Mater. Chem., 2011, 21: 11239-11243
[104] Zhang W J, Zhong X H. Inorg. Chem., 2011, 50: 4065-4072

[1] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[4] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[5] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[6] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[7] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[8] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[9] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[10] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[11] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[12] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[13] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[14] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[15] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
阅读次数
全文


摘要

Ⅰ-Ⅲ-Ⅵ族半导体纳米晶