English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

离子液体捕集CO2

周凌云1,2, 樊静1, 王键吉1   

  1. 1. 河南师范大学化学与环境科学学院 新乡 453007;
    2. 河南科技学院资源与环境学院 新乡 453003
  • 收稿日期:2011-02-01 修回日期:2011-04-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 王键吉 E-mail:jwang@henannu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20873036)和河南省杰出人才计划项目(No. 084200510015)资助

Capture of CO2 by Ionic Liquids

Zhou Lingyun1,2, Fan Jing1, Wang Jianji1   

  1. 1. School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, China;
    2. College of Resource and Environment, Henan Institute of Science and Technology, Xinxiang 453003, China
  • Received:2011-02-01 Revised:2011-04-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Wang Jianji E-mail:jwang@henannu.edu.cn

CO2是导致温室效应的最主要成分,因此碳捕集技术的研究受到学术界和产业界的高度重视。离子液体具有不挥发、不燃烧、热稳定性好、溶解能力强、结构和性质可调节并可循环使用等特性,在CO2的吸收/分离领域展现了广阔的应用前景。本文系统地综述了近年来常规离子液体、功能化离子液体、支撑离子液体膜、聚合离子液体以及离子液体与分子溶剂的混合物在捕集CO2方面的研究进展;讨论了离子液体的阳离子结构、阴离子类型、烷基链长度、阴/阳离子的氟化程度和功能化、离子液体的负载作用和聚合效应以及体系的温度和压力对CO2选择性捕集性能的影响;分析了可能的捕集机理以及各种捕集方法的优点和缺点;提出了目前需要进一步研究的若干重要问题,并对其发展前景进行了展望。

Since CO2 is one of the most important greenhouse gases, the research and development in the carbon capture have long been the focus of many academic and industrial studies. Ionic liquids have a number of unique properties, such as no-volatility, non-flammation, recyclability, high thermal stability, strong solubility capacity, and the tunability of molecular structures and physicochemical properties. Thus they have promising application in absorption and separation of CO2. In this paper, the recent progress in the CO2 capture by using regular ionic liquids, task-specific ionic liquids, supported ionic-liquids membranes, polymerized ionic liquids and the mixtures of ionic liquids with some molecular solvents have been reviewed. The effects of cationic structure, anionic property, alkyl chain length, functionalization of both the cations and the anions, characteristics of the supported membranes, the polymerized degree of ionic liquids, temperature and pressure of the systems on the selective capture of CO2 are discussed in detail. The possible mechanisms for the capture and selective separation of CO2 are also demonstrated. Furthermore, the advantages and disadvantages have been analyzed for the above mentioned ionic liquids systems in the capture of CO2. The future development in this area is prospected, and several important issues are suggested for the further work.

Contents
1 Introduction
2 CO2 capture by ionic liquids
2.1 Regular ionic liquids
2.2 Task-specific ionic liquids
2.3 Supported ionic liquid membranes
2.4 Polymerized ionic liquids
2.5 Mixtures of ionic liquids with molecular solvents
3 Conclusions and outlook

中图分类号: 

()

[1] Srivastava M L, Shukla N K, Sungh S K, Jaiswal M R. J. Membr. Sci., 1996, 117 : 39-44
[2] Moreno C, Valiente M. J. Membr. Sci., 1999, 155 : 155-162
[3] Jamal A, Meisen A, Lim C J. Chem. Eng. Sci., 2006, 61 : 6590-6603
[4] Oyenekan B A, Rochelle G T. Ind. Eng. Chem. Res., 2006, 45 : 2457-2466
[5] Henni A, Li J, Tontiwachwuthikul P. Ind. Eng. Chem. Res., 2008, 47 : 2213-2220
[6] Rogers R D. Nature, 2007, 447 : 917-918
[7] Bara J E, Carlisle T K, Gabriel C J, Camper D, Finotello A, Gin D L, Noble R D. Ind. Eng. Chem. Res., 2009, 48 : 2739-2751
[8] Hasib-ur-Rahman M, Siaj M, Larachi F. Chemical Engineering and Processing, 2010, 49 : 313-322
[9] Karadas F, Atilhan M, Aparicio S. Energy Fuels, 2010, 24 : 5817-5828
[10] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399 : 28-29
[11] Blanchard L A, Gu Z Y, Brennecke J F. J. Phys. Chem. B, 2001, 105 : 2437-2444
[12] Yuan X L, Zhang S J, Liu J, Lu X M. Fluid Phase Equilib., 2007, 257 : 195-200
[13] Anthony J L, Anderson J L, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2005, 109 : 6366-6374
[14] Hong G, Jacquemin J, Deetlefs M, Hardacre C, Husson P, Gomes M FC. Fluid Phase Equilib., 2007, 257 : 27-34
[15] Kumelan J, Tuma D, Kamps AP S, Maurer G J. Chem. Eng. Data, 2010, 55 : 165-172
[16] Anthony J L, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2002, 106 : 7315-7320
[17] Anderson J L, Dixon J K, Brennecke J F. Acc. Chem. Res., 2007, 40 : 1208-1216
[18] Baltus R E, Culbertson B H, Dai S, Luo H, DePaoli D W. J. Phys. Chem. B, 2004, 108 : 721-727
[19] Chen Y H, Zhang S J, Yuan X L, Zhang Y Q, Zhang X P, Dai W B, Mori R. Thermochimica Acta, 2006, 441 : 42-44
[20] Muldoon M J, Aki S N V K, Anderson J L, Dixon J K, Brennecke J F. J. Phys. Chem. B, 2007, 111 : 9001-9009
[21] Cadena C, Anthony J L, Shah J K, Morrow T I. J. Am. Chem. Soc., 2004, 126 : 5300-5308
[22] Aki S N V K, Mellein B R, Saurer E M, Brennecke J F. J. Phys. Chem. B, 2004, 108 : 20355-20365
[23] Scilderman A M, Raeissi S, Peters C J. Fluid Phase Equilib., 2007, 260 : 19-22
[24] Zhang X C, Liu Z P, Wang W C. AIChE J., 2008, 54 : 2717-2728
[25] Jalili A H, Mehdizadeh A, Shokouhi M, Sakhaeinia H, Taghikhani V. J. Chem. Thermodynamics, 2010, 42 : 787-791
[26] Shin E K, Lee B C. J. Chem. Eng. Data, 2008, 53 : 2728-2734
[27] Palgunadi J, Kang J E, Nguyen D Q, Kim J H, Min B K, Lee S D, Kim H, Kim H S. Thermochim. Acta, 2009, 494 : 94-98
[28] Shin E K, Lee B C, Limb J S. J. Supercrit. Fluids, 2008, 45 : 282-292
[29] Wolsky A M, Daniels E J, Jody B. J. Environ. Prog., 1994, 13 : 214-219
[30] Bates E D, Mayton R D, Ntai L, Davis J H. J. Am. Chem. Soc., 2002, 124 : 926-927
[31] Crooks J E, Donnellan J P. J. Chem. Soc. Perkin Trans. Ⅱ, 1989, 331-333
[32] Zhang J M, Zhang S J, Dong K, Zhang Y Q, Shen Y Q, Lu X M. Chem. Eur. J., 2006, 12 : 4021-4026
[33] Zhang Y Q, Zhang S J, Lu X M, Zhou Q, Fan W, Zhang X P. Chem. Eur. J., 2009, 15 : 3003-3011
[34] Gurkan B E, de la Fuente J C, Mindrup E M, Ficke L E, Goodrich B F, Price E A, Schneider W F, Brennecke J F. J. Am. Chem. Soc., 2010, 132 : 2116-2117
[35] Soutullo M D, Odom C I, Wicker B F, Henderson C N, Stenson A C, Davis J H. Chem. Mater., 2007, 19 : 3581-3583
[36] Yu G R, Zhang S J. Fluid Phase Equilibria, 2007, 255 : 86-92
[37] Scovazzo P, Kieft J, Finan D A, Koval C, DuBois D, Noble R. J. Membr. Sci., 2004, 238 : 57-63
[38] Baltus R E, Counce R M, Culbertson B H, Luo H, DePaoli D W, Dai S, Duckworth D C. Sep. Sci. Technol., 2005, 40 : 525-541
[39] Park Y I, Kim B S, Byun Y H, Lee S H, Lee E W, Lee J M. Desalination, 2009, 236 : 342-348
[40] Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M. J. Membr. Sci., 2008, 314 : 1-4
[41] Myers C, Pennline H, Luebke D, Ilconich J, Dixon J K, Maginn E J, Brennecke J F. J. Membr. Sci., 2008, 322 : 28-31
[42] Bara J E, Gabriel C J, Carlisle T K, Camper D, Finotello A, Gin D L, Noble R D. Chem. Eng. J., 2009, 147 : 43-50
[43] Ilconich J, Myers C, Pennline H, Luebke D. J. Membr. Sci., 2007, 298 : 41-47
[44] Iarikova D D, Hacarlioglua P, Oyama S T. Chem. Eng. J., 2011, 166 : 401-406
[45] Tang J B, Tang H D, Sun W L, Plancher H, Radosz M, Shen Y Q. Chem. Commun., 2005, 3325-3327
[46] Tang J B, Sun W L, Tang H D, Radosz M, Shen Y Q. Macromolecules, 2005, 38 : 2037-2039
[47] Bara J E, Lessmann S, Gabriel C J, Hatakeyama E S, Noble R D, Gin D L. Ind. Eng. Chem. Res., 2007, 46 : 5397-5404
[48] Blasig A, Tang J B, Hu X, Tan S, Shen Y Q, Radosz M. Ind. Eng. Chem. Res., 2007, 46 : 5542-5547
[49] Blasig A, Tang J B, Hu X, Shen Y Q, Radosz M. Fluid Phase Equilib., 2007, 256 : 75-80
[50] Tang J B, Tang H D, Sun W L, Radosz M, Shen Y Q. Polymer, 2005, 46 : 12460-12467
[51] Tang J B, Tang H D, Sun W L, Radosz M, Shen Y Q. J. Polym. Sci. A: Polym. Chem., 2005, 43 : 5477-5489
[52] Tang J B, Shen Y Q, Radosz M, Sun W L. Ind. Eng. Chem. Res., 2009, 48 : 9113-9118
[53] Bara J E, Gabriel C J, Hatakeyama E S. J. Membr. Sci., 2008, 321 : 3-7
[54] Bara J E, Hatakeyama E S, Gin D L, Noble R D. Polym. Adv. Technol., 2008, 19 : 1415-1420
[55] Bara J E, Camper D E, Gin D L, Noble R D. Acc. Chem. Res., 2010, 43 : 152-159
[56] Ventura S P M, Pauly J, Daridon J L, de Silva J A L, Marrucho I M, Dias A M A, Coutinho J A P. J. Chem. Thermodyn., 2008, 40 : 1187-1192
[57] Li X, Hou M, Zhang Z, Han B, Yang G, Wang X, Zou L. Green Chem., 2008, 10 : 879-884
[58] Camper D, Bara J E, Gin D L, Noble R D. Ind. Eng. Chem. Res., 2008, 47 : 8496-8498
[59] Zhang F, Fang C G, Wu Y T, Wang Y T, Li A M, Zhang Z B. Chem. Eng. J., 2010, 160 : 691-697
[60] Zhao Y S, Zhang X P, Zhang S J, Zhou Q, Dong H F, Tian X, Zhang S J. J. Chem. Eng. Data, 2010, 55 : 3513-3519

[1] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[2] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[3] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[4] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[5] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[6] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[7] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[8] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[9] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[10] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[11] 王德超, 辛洋洋, 李晓倩, 姚东东, 郑亚萍. 多孔液体在气体捕集与分离领域的应用[J]. 化学进展, 2021, 33(10): 1874-1886.
[12] 谢嘉恩, 罗雨珩, 张黔玲, 张平玉. 金属配合物在双光子荧光探针中的应用研究[J]. 化学进展, 2021, 33(1): 111-123.
[13] 李波, 马利建, 罗宁, 李首建, 陈云明, 张劲松. 固相萃取分离铀[J]. 化学进展, 2020, 32(9): 1316-1333.
[14] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[15] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
阅读次数
全文


摘要

离子液体捕集CO2