English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

离子液体在气体分离中的应用

赵旭, 邢华斌, 李如龙, 杨启炜, 苏宝根, 任其龙   

  1. 浙江大学化学工程与生物工程学系 二次资源化工国家专业实验室 杭州 310027
  • 收稿日期:2011-03-01 修回日期:2011-05-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 邢华斌 E-mail:xinghb@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20806066)、浙江省自然科学基金项目(No.Y4080167)和国家高技术发展计划(863)项目(No.2009AA044701)资助

Gas Separation Based on Ionic Liquids

Zhao Xu, Xing Huabin, Li Rulong, Yang Qiwei, Su Baogen, Ren Qilong   

  1. National Laboratory of Secondary Resources Chemical Engineering, Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2011-03-01 Revised:2011-05-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Xing Huabin E-mail:xinghb@zju.edu.cn

离子液体是一类“可设计溶剂”,具有极低的蒸气压,几乎不挥发以及选择性溶解能力,近年来在气体分离领域得到了广泛的关注。本文综述了CO2和SO2等酸性气体、低碳链烷烃、烯烃和炔烃等有机气体,以及H2、O2、CO、N2、Ar、Xe等其他气体在离子液体中的溶解性能,归纳了气体在离子液体中的溶解机理和溶解规律,分析了离子液体结构与溶解度、分离性质的定性关系,其中具有胺基、胍基等碱性基团的功能化离子液体对CO2、SO2等酸性气体具有良好的溶解性,含有不饱和基团的离子液体通过π-π相互作用可以改善烯烃在离子液体中的溶解度,炔烃则易溶于氢键碱性较强的离子液体;并介绍了离子液体/气体二元体系分子模拟、溶解度关联模型以及离子液体固定化用于气体分离等工作的研究进展,探讨了离子液体气体分离研究存在的问题和未来发展方向。

In recent years, ionic liquids have attracted considerable interests in the field of gas separation, due to their selective dissolution of certain gases, nearly non-volatility and tunable property and structure. In this article, the solubilities of CO2, SO2, H2, O2, CO, N2, Ar, Xe and short-chain alkanes, alkenes, alkynes in ionic liquids are summarized. The mechanism and the qualitative relationship between gas solubility and the structure of ionic liquid are introduced. Functionalized ionic liquids containing basic groups such as amino and guanidine have high performance to capture CO2 and SO2. The solubilities of alkenes in ionic liquids can be improved by adding unsaturated groups in ionic liquids via π-π interaction, and the solubility of alkynes in ionic liquids increases with increasing hydrogen-bond basicity of ionic liquids. The progress involving molecular simulation of ionic liquid/gas binary system, correlation models of gas solubility, and gas separation based on immobilized ionic liquids are introduced and summarized. Finally, the existing problems and development directions in the future of gas separation using ionic liquids are discussed.

Contents
1 Introduction
2 Solubilities of gases in ionic liquids
2.1 Acidic gases
2.2 Organic gases
2.3 Other gases
3 Molecular simulation study of ionic liquid/gas mixture
4 Correlation models of gas solubility in ionic liquids
5 Gas separation based on immobilized ionic liquids
6 Conclusions and outlook

中图分类号: 

()

[1] Brennecke J F, Maginn E J. AIChE J., 2001, 47 : 2384-2389
[2] Winkel A, Reddy P V G, Wilhelm R. Synthesis, 2008, 7 : 999-1016
[3] Baudequin C, Baudoux J, Levillain J, Cahard D, Gaumont A C, Plaquevent J C. Tetrahedron: Asymmetry, 2003, 14 : 3081-3093
[4] Zhao D B, Fei Z F, Geldbach T J, Scopelliti R, Dyson P J. J. Am. Chem. Soc., 2004, 126 : 15876-15882
[5] Lee S G. Chem. Commun., 2006, 1049-1063
[6] Giernoth R. Angew. Chem. Int. Ed., 2010, 49 : 2834-2839
[7] Olivier-Bourbigou H, Magna L, Morvan D. Applied Catalysis A: General, 2010, 373 : 1-56
[8] Holbrey J D, Seddon K R. Clean Prod. Proc., 1999, 1 : 223-236
[9] Seddon K R. J. Chem. Tech. Biotechnol., 1997, 68 : 351-356
[10] Marsh K N, Boxall J A, Lichtenthaler R. Fluid Phase Equilib., 2004, 219 : 93-98
[11] DeSimone J M. Science, 2002, 297 : 799-803
[12] Welton T. Chem. Rev., 1999, 99 : 2071-2083
[13] Sheldon R. Chem. Commun., 2001, 2399-2407
[14] Xing H B, Wang T, Zhou Z H, Dai Y Y. J. Mol. Cata. A: Chem., 2007, 264 : 53-59
[15] Endres F. ChemPhysChem, 2002, 3 : 144-154
[16] Zhao F, Wu X E, Wang M K, Liu Y, Gao L X, Dong S J. Anal. Chem., 2004, 76 : 4960-4967
[17] Armstrong D W, He L F, Liu Y S. Anal. Chem., 1999, 71 : 3873-3876
[18] Yang Q W, Xing H B, Cao Y F, Su B G, Yang Y W, Ren Q L. Ind. Eng. Chem. Res., 2009, 48 : 6417-6422
[19] Han X X, Armstrong D W. Acc. Chem. Res., 2007, 40 : 1079-1086
[20] Cooper E R, Andrews C D, Wheatley P S, Webb P B, Wormald P, Morris R E. Nature, 2004, 430 : 1012-1016
[21] Zhou Y, Schattka J H, Antonietti M. Nano Letters, 2004, 4 : 477-481
[22] Van Rantwijk F, Sheldon R A. Chem. Rev., 2007, 107 : 2757-2785
[23] Bara J E, Carlisle T K, Gabriel C J, Camper D, Finotello A, Gin D L, Noble R D. Ind. Eng. Chem. Res., 2009, 48 : 2739-2751
[24] Bates E D, Mayton R D, Ntai I, Davis J H. J. Am. Chem. Soc., 2002, 124 : 926-927
[25] Blanchard L A, Hancu D, Beckman E J, Brennecke J F. Nature, 1999, 399 : 28-29
[26] Scurto A M, Aki S N V K, Brennecke J F. J. Am. Chem. Soc., 2002, 124 : 10276-10277
[27] Scovazzo P, Kieft J, Finan D A, Koval C, Dubois D, Noble R. J. Membr. Sci., 2004, 238 : 57-63
[28] Bara J E, Camper D E, Gin D L, Noble R D. Acc. Chem. Res., 2010, 43 : 152-159
[29] Poole C F. J. Chromatogr. A, 2004, 1037 : 49-82
[30] Jiang Y Y, Wang G N, Zhou Z, Wu Y T, Geng J, Zhang Z B. Chem. Commun., 2008, 505-507
[31] Yu H, Wu Y T, Jiang Y Y, Zhou Z, Zhang Z B. New J. Chem., 2009, 33 : 2385-2390
[32] Anthony J L, Anderson J L, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2005, 109 : 6366-6374
[33] Cadena C, Anthony J L, Shah J K, Morrow T I, Brennecke J F, Maginn E J. J. Am. Chem. Soc., 2004, 126 : 5300-5308
[34] Hert D G, Anderson J L, Aki S N V K, Brennecke J F. Chem. Commun., 2005, 2630-2605
[35] Muldoon M J, Anderson J L, Dixon J K, Aki S N V K, Brennecke J F. J. Phys. Chem. B, 2007, 111 : 9001-9009
[36] Almantariotis D, Gefflaut T, Pádua A A H, Coxam J Y, Gomes M F C. J. Phys. Chem. B, 2010, 114 : 3608-3617
[37] Aki S N V K, Mellein B R, Saurer E M, Brennecke J F. J. Phys. Chem. B, 2004, 108 : 20355-20365
[38] Deschamps J, Gomes M F C, Pádua A A H. ChemPhysChem, 2004, 5 : 1049-1052
[39] Kazarian S G, Briscoe B J, Welton T. Chem. Commun., 2000, 2047-2048
[40] Zhang J, Zhang Q H, Qiao B T, Deng Y Q. J. Chem. Eng. Data, 2007, 52 : 2277-2283
[41] Chen Y H, Zhang S J, Yuan X L, Zhang Y Q, Zhang X P, Dai W B, Mori R. Thermochim. Acta, 2006, 441 : 42-44
[42] Ferguson L, Scovazzo P. Ind. Eng. Chem. Res., 2007, 46 : 1369-1374
[43] Fukumoto K, Yoshizawa M, Ohno H. J. Am. Chem. Soc., 2005, 127 : 2398-2399
[44] Kagimoto J, Fukumoto K, Ohno H. Chem. Commun., 2006, 2254-2256
[45] Zhao H, Jackson L, Song Z, Olubajo O. Tetrahedron: Asymmetry, 2006, 17 : 1549-1553
[46] Tao G, He L, Sun N, Kou Y. Chem. Commun., 2005, 3562-3564
[47] Fukumoto K, Ohno H. Chem. Commun., 2006, 3081-3083
[48] Tao G, He L, Liu W, Xu L, Xiang W, Wang T, Kou Y. Green Chem., 2006, 8 : 639-646
[49] Zhang J M, Zhang S J, Dong K, Zhang Y Q, Shen Y Q, Lv X M. Chem. Eur. J., 2006, 12 : 4021-4026
[50] Zhang Y Q, Zhang S J, Lu X M, Zhou Q, Fan W, Zhang X P. Chem. Eur. J., 2009, 15 : 3003-3011
[51] Wang C M, Luo X Y, Luo H M, Jiang D E, Li H R, Dai S. Angew. Chem. Int. Ed., 2011, 50 : 1-6
[52] Wu W Z, Han B X, Gao H X, Liu Z M, Jiang T, Huang J. Angew. Chem. Int. Ed., 2004, 43 : 2415-2417
[53] Huang J, Riisager A, Wasserscheid P, Fehrmann R. Chem. Commun., 2006, 4027-4029
[54] Huang J, Riisager A, Berg R W, Fehrmann R. J. Mol. Catal. A: Chem., 2008, 279 : 170-176
[55] Yuan X L, Zhang S J, Lu X M. J. Chem. Eng. Data, 2007, 52 : 596-599
[56] Anderson J L, Dixon J K, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2006, 110 : 15059-15062
[57] Camper D, Becker C, Koval C, Noble R. Ind. Eng. Chem. Res., 2005, 44 : 1928-1933
[58] Condemarin R, Scovazzo P. Chem. Eng. J., 2009, 147 : 51-57
[59] Lee B C, Outcalt S L. J. Chem. Eng. Data, 2006, 51 : 892-897
[60] Palgunadi J, Kim H S, Lee J M, Jung S. Chem. Eng. Process., 2010, 49 : 192-198
[61] Palgunadi J, Hong S Y, Lee J K, Lee H, Lee S D, Cheong M, Kim H S. J. Phys. Chem. B, 2011, 115 : 1067-1074
[62] Lee J M, Palgunadi J, Kim J H, Jung S, Choi Y S, Cheong M, Kim H S. Phys. Chem. Chem. Phys., 2010, 12 : 1812-1816
[63] Kumelan J, Kamps Á P S, Tuma D, Maurer G. J. Chem. Eng. Data, 2006, 51 : 1364-1367
[64] Kumelan J, Kamps Á P S, Tuma D, Maurer G. Fluid Phase Equilib., 2007, 260 : 3-8
[65] Kumelan J, Kamps Á P S, Tuma D, Maurer G. J. Chem. Eng. Data, 2010, 55 : 165-172
[66] Finotello A, Bara J E, Camper D, Noble R D. Ind. Eng. Chem. Res., 2008, 47 : 3453-3459
[67] Jacquemin J, Gomes M F C, Husson P, Majer V. J. Chem. Thermodyn., 2006, 38 : 490-502
[68] Jacquemin J, Husson P, Majer V, Gomes M F C. Fluid Phase Equilib., 2006, 240 : 87-95
[69] Kumelan J, Kamps Á P S, Urukova I, Tuma D, Maurer G. J. Chem. Thermodyn., 2005, 37 : 595-602
[70] Kumelan J, Kamps Á P S, Tuma D, Maurer G. Ind. Eng. Chem. Res., 2007, 46 : 8236-8240
[71] Kumelan J, Kamps Á P S, Tuma D, Maurer G. J. Chem. Eng. Data, 2007, 52 : 2319-2324
[72] Prasad B R, Senapati S. J. Phys. Chem. B, 2009, 113 : 4739-4743
[73] Shah J K, Maginn E J. J. Phys. Chem. B, 2005, 109 : 10395-10405
[74] Husson-Borg P, Majer V, Gomes M F C. J. Chem. Eng. Data, 2003, 48 : 480-485
[75] Hong G, Jacquemin J, Deetlefs M, Hardacre C P. Husson P, Gomes M F C. Fluid Phase Equilib., 2007, 257 : 27-34
[76] Soriano A N, Doma B T, Li M H. J. Chem. Thermodyn., 2008, 40 : 1654-1660
[77] Soriano A N, Doma B T, Li M H. J. Chem. Thermodyn., 2009, 41 : 525-529
[78] Jalili A H, Mehdizadeh A, Shokouhi M, Sakhaeinia H, Taghikhani V. J. Chem. Thermodyn., 2010, 42 : 787-791
[79] Camper D, Scovazzo P, Koval C, Noble R. Ind. Eng. Chem. Res., 2004, 43 : 3049-3054
[80] Scovazzo P, Camper D, Kieft J, Poshusta J, Koval C, Noble R. Ind. Eng. Chem. Res., 2004, 43 : 6855-6860
[81] Holbrey J D, Seddon K R. J.Chem. Soc. Dalton Tran., 1999, 2133-2139
[82] Kilaru P K, Condemarin R A, Scovazzo P. Ind. Eng. Chem. Res., 2008, 47 : 900-909
[83] Kilaru P K, Scovazzo P. Ind. Eng. Chem. Res., 2008, 47 : 910-919
[84] Yokozeki A, Shiflett M B. Energy Fuels, 2009, 23 : 4701-4708
[85] Shiflett M B, Yokozeki A. Energy Fuels, 2010, 24 : 1001-1008
[86] Jacquemin J, Husson P, Padua A A H, Majer V. Green Chem., 2006, 8 : 172-180
[87] Tang J B, Sun W L, Tang H D, Radosz M, Shen Y Q. Macromolecules, 2005, 38 : 2037-2039
[88] Tang J B, Tang H D, Sun W L, Radosz M, Shen Y Q. J. Polym. Sci. A: Polym. Chem., 2005, 43 : 5477-5489
[89] Tang J B, Tang H D, Sun W L, Plancher H, Radosz M, Shen Y Q. Chem. Commun., 2005, 3325-3327
[90] Blasig A, Tang J B, Hu X D, Tan S P, Shen Y Q, Radosz M. Ind. Eng. Chem. Res., 2007, 46 : 5542-5547
[91] Zhang Z M, Wu L B, Dong J, Li B G, Zhu S P. Ind. Eng. Chem. Res., 2009, 48 : 2142-2148
[92] Scovazzo P, Visser A E, Davis J H, Rogers R D, Koval C A, Dubois D L, Noble R D. ACS Symposium Series (Eds. Rogers R D, Seddon K R ). San Diego: Ionic Liquids-Industuial Applications for Green Chemistry, 2002, 818 : 69-87
[93] Jiang Y Y, Zhou Z, Jiao Z, Li L, Wu Y T, Zhang Z B. J. Phys. Chem. B, 2007, 111 : 5058-5061
[94] Gan Q, Rooney D, Zou Y R. Desalination, 2006, 199 : 535-537
[95] Gan Q, Rooney D, Xue M L, Thompson G, Zou Y R. J. Membr. Sci., 2006, 280 : 948-956
[96] Bara J E, Lessmann S, Gabriel C J, Hatakeyama E S, Noble R D, Gin D L. Ind. Eng. Chem. Res., 2007, 46 : 5397-5404
[97] Hu X D, Tang J B, Blasig A, Shen Y Q, Radosz M. J. Membr. Sci., 2006, 281 : 130-138

[1] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[2] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[3] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[4] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[5] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[6] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[7] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[8] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[9] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[10] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[11] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[12] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[13] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[14] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
[15] 朱继秀, 陈巧芬, 倪梯铜, 陈爱民, 邬建敏. 气敏新材料MXenes在呼出气体传感器中的应用[J]. 化学进展, 2021, 33(2): 232-242.
阅读次数
全文


摘要

离子液体在气体分离中的应用