English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

离子液体中酶促区域选择性合成CFAE

石玉刚1,2, 蔡燕3, 励建荣1, 朱延和2   

  1. 1. 浙江工商大学食品与生物工程学院 浙江省食品安全重点实验室 杭州 310035;
    2. 台湾中正大学 化学与生物化学系 嘉義 621;
    3. 南通大学化学化工学院 南通 226019
  • 收稿日期:2011-02-01 修回日期:2011-07-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 石玉刚 E-mail:yugangshi@126.com
  • 基金资助:

    国家自然科学基金项目(No.21106131)、浙江省自然科学基金项目(No.Y4100762)、浙江省教育厅科研项目(No.Y201016439)、浙江工商大学人才引进科研基金(No.09-57)和2009年浙江省大学生科技创新活动计划(2007R408004)资助

Enzyme-Catalyzed Regioselective Synthesis of Carbohydrate Fatty Acid Esters in Ionic Liquids

Shi Yugang1,2, Cai Yan3, Li Jianrong1, Chu Yenho2   

  1. 1. School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, China;
    2. Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 621, China;
    3. School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
  • Received:2011-02-01 Revised:2011-07-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Shi Yugang E-mail:yugangshi@126.com

碳水化合物脂肪酸酯(CFAE)作为一类非离子型生物表面活性剂,被广泛用于食品、医药及化妆品工业,一些CFAE还具有抗菌、抗肿瘤等特殊生物活性。非水介质中酶促区域选择性合成CFAE反应的瓶颈在于高极性碳水化合物与酰基供体不易相溶,并具有多个可酰化羟基。传统有机溶剂虽能提高极性底物在体系中溶解度,但常使酶活下降。新型绿色介质离子液体用于CFAE的酶法合成过程具有诸多优点,不仅生物催化剂能维持较好的活性与稳定性,且良好的底物溶解性可改善反应区域选择性及转化速率,反应体系还可重复利用。本文介绍了离子液体中影响酶促区域选择性合成CFAE反应的主要因素,包括酶、底物在离子液体中的溶解性能及底物自身性质等,详述了离子液体中酶促制备CFAE的研究进展,也指出了酶促合成CFAE存在的问题与发展前景。

Carbohydrate fatty acid esters (CFAE) are nonionic biosurfactants, which can be synthesized from the enzyme-catalyzed esterification/transesterification of carbohydrates. These esters are increasingly used as valuable commodity chemicals in food, pharmaceutical and cosmetic industries. In addition, some CFAE also show antitumor and/or antibiotic activities. CFAE could be prepared enzymatically under mild conditions with a high regioselectivity. Synthesis of CFAE in non-aqueous solvents is difficult due to the low solubility of carbohydrates. The multi-hydroxyl groups of carbohydrates and the immiscibility with the acyl group donor are the major obstacles in the CFAE synthesis process. Although traditional water-miscible organic solvents also enhance solubility, they often inactivate enzymes. However, ionic liquids do not even when they have similar polarities. The use of ionic liquids has offered many advantages to the biocatalysis field, including improved enzyme's activity and stability, and better substrate dissolution makes the initial acylation faster and makes the regioselective acylation of sugars higher. Ionic liquids may be greener than organic solvents because the reaction system can be reused/recycled. Here, the main factors (enzymes, the solubility of substrates in ILs, property of substrates) affecting the enzymatic reaction are introduced. The latest progress of research on enzymatic synthesis of CFAE in ionic liquids is reviewed. In addition, the existing problems in the field of enzymatic synthesis of CFAE as well as its future perspectives are pointed out.

Contents
1 Introduction
2 Enzymes for the synthesis of CFAE
2.1 Enzymes from different sources
2.2 The pretreatment of enzymes
3 Ionic liquids and carbohydrates
3.1 Ionic liquids
3.2 Ionic liquids that dissolve carbohydrates
4 Property of substrates
5 Enzymatic synthesis of CFAE in ionic liquids
5.1 Monosaccharides
5.2 Disaccharides
5.3 Polysaccharides
5.4 Other related compounds
6 Conclusion and future outlook

中图分类号: 

()

[1] Holmberg K. Curr. Opin. Colloid Interface Sci., 2001, 6: 148-159
[2] Johansson I, Svensson M. Curr. Opin. Colloid Interface Sci., 2001, 6: 178-188
[3] Zhang W, Jia C, Wang Y, Kim J M, Jiang P, Zhang X. Food Chem., 2009, 112: 421-427
[4] Nishikawa Y, Okabe M, Yoshimoto K, Kurono G, Fukuoka F. Chem. Pharm. Bull., 1976, 24: 387-393
[5] Watanabe T, Katayama S, Matsubara M, Honda Y, Kuwahara M. Curr. Microbiol., 2000, 41: 210-213
[6] McKenzie C L, Weathersbee Ⅲ A A, Puterka G J. J. Econ. Entomol., 2005, 98: 1242-1247
[7] Habulin M, Sabeder S, Knez Z. J. Supercrit. Fluids, 2008, 45: 338-345
[8] Devulapalle K S, Segura A G, Ferrer M, Alcalde M, Mooser G, Plou F J. Carbohyd. Res., 2004, 339: 1029-1034
[9] Okabe S, Suganuma M, Tada Y, Ochiai Y, Sueoka E, Kohya H, Shibata A, Takahashi M, Mizutani M, Matsuzaki T, Fujiki H. J. Cancer. Res., 1999, 90: 669-676
[10] Kennedy J F, Kumar H, Panesar P S, Marwaha S S, Goyal R, Parmar A, Kaur S. J. Chem. Technol. Biotechnol., 2006, 81: 866-876
[11] Chang S W, Shaw J F. New Biotechnol., 2009, 26: 109-116
[12] MacManus D A, Vulfson E N. Enzyme Microb. Technol., 1997, 20: 225-228
[13] Bruno D, Monica L, Giannantonio S. J. Mol. Catal. B-Enzym., 1997, 3: 193-201
[14] Pedersen N R, Halling P J, Pedersen L H, Matthiesen R, Veltman O R. FEBS Lett., 2002, 519: 181-184
[15] Rich J O, Bedell B A, Dordick J S. Biotechnol. Bioeng., 1995, 45: 426-434
[16] Kim J E, Han J J, Yoon J H, Rhee J S. Biotechnol. Bioeng., 1998, 57: 121-125
[17] Ferrer M, Crucesm M A, Bernabé M, Ballesteros A, Plou F J. Biotechnol. Bioeng., 1999, 65: 10-16
[18] Cruces M A, Otero C, Bernabé M L, Ballesteros A. Ann. N. Y. Acad. Sci., 1992, 672: 436-443
[19] Soedjak H S, Spradlin J E. Biocatal. Biotransform., 1994, 11: 241-248
[20] Polat T, Bazin H G, Linhardt R J. J. Carbohydr. Chem., 1997, 16: 1319-1325
[21] Pedersen N R, Wimmer R, Matthiesen R, Pedersen L H, Gessesse A. Tetrahedron: Asymmetry, 2003, 14: 667-673
[22] Borgesm R, Balaban R. Macromol. Symp., 2007, 258: 25-29
[23] Ritthitham S, Wimmer R, Stensballe A, Pedersen L H. J. Mol. Catal. B-Enzym., 2009, 59: 266-273
[24] Li G Y, Cai Y J, Liao X R, Yin J. Biotechnol. Lett., 2011, 33: 607-610
[25] Plou F J, Crucesm A, Ferrer M, Fuentes G, Pastor E, Bernabé M, Christensen M, Comelles F, Parra J L, Ballesteros A. J. Biotechnol., 2002, 96: 55-66
[26] Cao L, Bornscheuer U T, Schmid R D. J. Mol. Catal. B-Enzym., 1999, 6: 279-285
[27] Plou F J, Crucesm A, Pastor E, Ferrer M, Bernabé M, Ballesterose A. Biotechno. Lett., 1999, 21: 635-639
[28] Ferrer M, Plou F J, Fuentes G, Cruces M A, Andersen L, Kirk O, Christensen M, Ballesteros A. Biocatal. Biotransform., 2002, 20: 63-71
[29] Ganske F, Bornscheuer U T. Org. Lett., 2005, 7: 3097-3098
[30] Tsuzuki W, Kitamura Y, Suzuki T, Kobayashi S. Biotechnol. Bioeng., 1999, 64: 267-271
[31] Maruyama T, Nagasawa S I, Goto M. J. Biosci. Bioeng., 2002, 94: 357-361
[32] Itoh T, Han S, Matsushita Y, Hayase S. Green Chem., 2004, 6: 437-439
[33] Itoh T, Matsushita Y, Abe Y, Han S H, Wada S, Hayase S, Kawatsura M, Takai S, Morimoto M, Hirose Y. Chem. Eur. J., 2006, 12: 9228-9237
[34] Lozano P, Piamtongkam R, Kohns K, De Diego T, Vaultier M, Iborra J L. Green Chem., 2007, 9: 780-784
[35] Mutschler J, Rausis T, Bourgeois J M, Bastian C, Zufferey D, Mohrenz I V, Fischer F. Green Chem., 2009, 11: 1793-1800
[36] Paulechka Y U, Kabo G J, Blokhin A V, Vydrov O A. J. Chem. Eng. Data, 2003, 48: 457-462
[37] Kosmulski M G, Rosenholm J J B. Thermochim. Acta, 2004, 412: 47-53
[38] Van Rantwijk F, Sheldon R A. Chem. Rev., 2007, 107: 2757-2785
[39] Rooney D, Jacquemin J, Gardas R. Top. Curr. Chem., 2010, 290: 185-212
[40] Murugesan S, Linhardt R J. Curr. Org. Synth., 2005, 2: 437-451
[41] Spear S K, Visser A E, Rogers R D. SPRI Conference on Sugar processing Research (Ed. Godshall M A). New Orleans: Sugar Processing Research Institute, Inc., 2002. 336-340
[42] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124: 4974-4975
[43] Li X, Geng Y, Simonsen J, Li K C. Holzforschung, 2004, 58: 280-285
[44] Pernak J, Zabielska-Matejuk J, Kropacz A, Foksowicz-Flaczyk J. Holzforschung, 2004, 58 (3): 286-291
[45] Przybysz K, Drzewińska E, Stanislawska A, Wysocka-Robak A. Ind. Eng. Chem. Res., 2005, 44: 4599-4604
[46] Anderson J L, Ding J, Welton T, Armstrong D W. J. Am. Chem. Soc., 2002, 124: 14247-14254
[47] Moulthrop J S, Swatloski R P, Moyna G, Rogers R D. Chem. Commun., 2005, 1557-1559
[48] Kimizuka N, Nakashima T. Langmuir, 2001, 17: 6759-6761
[49] 石玉刚 (Shi Y G). 江南大学博士论文(Doctoral Dissertation of Jiangnan University), 2009
[50] Tseng M C, Chu Y H. Chem. Commun., 2010, 2983-2985
[51] Tseng M C, Tseng M J, Chu Y H. Chem. Commun., 2009, 7503-7505
[52] Sowmiah S, Srinivasadesikan V, Tseng M C, Chu Y H. Molecules, 2009, 14: 3780-3813
[53] Chen C W, Tseng M C, Hsiao S K, Chen W H, Chu Y H. Org. Biomol. Chem., 2011, 9: 4188-4193
[54] Ferrer M, Soliveri J, Plou F J, Reyes-Duarte L C D, Christensen M, Copa-Patino J L, Ballesteros A. Enzyme Microb. Technol., 2005, 36: 391-398
[55] Polat T, Bazin H G, Linhardt R J. J. Carbohydr. Chem., 1997, 16: 1319-1325
[56] Sarney D B, Barnard M J, Macmanus D A, Vulfson E N. J. Am. Oil Chem. Soc., 1996, 73: 1481-1487
[57] Kim M J, Choi M Y, Lee J K, Ahn Y. J. Mol. Catal. B: Enzym., 2003, 26: 115-118
[58] Lkeda I, Klibanov A M. Biotechnol. Bioeng., 1993, 42: 788-791
[59] 高红霞(Gao H X), 冯骉(Feng B), 张晓鸣(Zhang X M), 贾承胜(Jia C S). 食品与发酵工业(Food and Fermentation Industries), 2007, 33: 5-8
[60] Park S, Kazlauskas R J. J. Org. Chem., 2001, 66: 8395-8401
[61] Lee S H, Hiep N M, Koo Y M, Ha S H. Process Biochem., 2008, 43: 1009-1012
[62] Ha S H, Hiep N M, Koo Y M. Biotechnol. Bioprocess Eng., 2010, 15: 126-130
[63] Liu Q B, Janssen M H A, van Rantwijk F, Sheldon R A. Green Chem., 2005, 7: 39-42
[64] Patil D R, Rethwisch D G, Dordick J S. Biotechnol. Bioeng., 1991, 37: 639-646
[65] Quan J, Xu J M, Liu B K, Zheng C Z, Lin X F. Enzyme Microb. Tech., 2007, 41: 756-763
[66] Weber H K, Stecher H, Faber K. Biotechnol. Lett., 1995, 17: 803-808
[67] Cauglia F, Canepa P. Bioresour. Technol., 2008, 99: 4065-4072
[68] Chamouleau F, Coulon D, Girardin M, Ghoul M. J. Mol. Catal. B-Enzym., 2001, 11: 949-954
[69] Zhao H, Baker G A, Song Z Y, Olubajo O, Crittle T, Peter D. Green Chem., 2008, 10: 696-705
[70] Réjasse B, Lamare S, Legoy M D, Besson T. J. Enzym. Inhib. Med. Chem., 2007, 22: 519-527
[71] Lee S H, Ha S H, Hiep N M, Chang W J, Koo Y M. J. Biotechnol., 2008, 133: 486-489
[72] Lee S H, Dang D T, Ha S H, Chang W J, Koo Y M. Biotechnol. Bioeng., 2008, 99: 1-8
[73] Tai H P, Brunner G. J. Supercrit. Fluids, 2009, 48: 36-40.
[74] Zhao H. J. Chem. Technol. Biotechnol., 2010, 85: 891-907
[75] Moniruzzaman M, Nakashima K, Kamiya N, Goto M. Biochem. Eng. J., 2010: 48: 295-314
[76] Lozano P. Green Chem., 2010, 12: 555-569
[77] Edgar K J. Cellulose, 2007, 14: 49-64
[78] Gradwell S. Comptes Rendus Biologies, 2004, 327: 945-953
[79] Wibowo A, Misra M, Park H, Drzal L, Schalek R, Mohanty A. Composites Part A, 2006, 37: 1428-1433
[80] Yin C Y, Li J B, Xu Q, Peng Q, Liu Y B, Shen X Y. Carbohydr. Polym., 2007, 67: 147-154
[81] Sereti V, Stamatis H, Koukios E, Kolisis F N. J. Biotechnol., 1998, 66: 219-223
[82] Heinze T, Schwikal K, Barthel S. Macromol. Biosci., 2005, 5: 520-525
[83] Schlufter K, Schmauder H P, Dorn S, Heinze T. Macromol. Rapid Commun., 2006, 27: 1670-1676
[84] Barthel S, Heinze T. Green Chem., 2006, 8: 301-306
[85] Zhang H, Wu J, Zhang J, He J S. Macromolecules, 2005, 38: 8272-8277
[86] Wu J, Zhang J, Zhang H, He J S, Ren Q, Guo M L. Biomacromolecules, 2004, 5: 266-268
[87] Cao Y, Wu J, Meng T, Zhang J, He J S, Li H Q, Zhang Y. Carbohydr. Polym., 2007, 69: 665-672
[88] 曹妍(Cao Y), 李会泉(Li H Q), 张懿(Zhang Y), 张军(Zhang J), 何嘉松(He J S). 高等学校化学学报(Chemical Journal of Chinese Universities), 2008, 29: 2115-2117
[89] Gremos S, Zarafeta D, Kekos D, Kolisis F. Bioresour. Technol., 2011, 102: 1378-1382
[90] Chen Z G, Zong M H, Li G J. J. Chem. Technol. Biotechnol., 2006, 81: 1225-1231
[91] Humeau C, Girardin M, Rovel B, Miclo A. J. Biotechnol., 1998, 63: 1-8
[92] Humeau C, Girardin M, Rovel B, Miclo A. J. Mol. Catal. B-Enzym., 1998, 5: 19-23
[93] Watanabe Y, Minemoto Y. Adachi S, Nakanishi Ka, Shimada Y, Matsuno R. Biotechnol. Lett., 2000, 22: 637-640
[94] Yan Y, Bornscheuer U T, Schmid R D. Biotechnol. Lett., 1999, 21: 1051-1054
[95] Park S, Viklund F, Hult K, Kazlauskas R J. Green Chem., 2003, 5: 715-719
[96] Kaftzik N, Wasserscheid P, Kragl U. Org. Proc. Res. Dev., 2002, 6: 553-557
[97] Nara S J, Mohile S S, Harjani J R, Naik P U, Salunkhe M M. J. Mol. Catal. B-Enzym., 2004, 28: 39-43
[98] Li X F, Lou W Y, Smith T J, Zong M H, Wu H, Wang J F. Green Chem., 2006, 8: 538-544
[99] Malhotra S V, Zhao H. Chirality, 2005, 17: S240-S242
[100] Ku M A, Hang Y D. Biotechnol. Lett., 1995, 17: 1081-1084

[1] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[2] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[3] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[4] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[5] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[6] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[7] 李志勇, 冯莹, 王慧勇, 袁晓晴, 赵玉灵, 王键吉. 光响应离子液体的结构与性能调控[J]. 化学进展, 2019, 31(11): 1550-1559.
[8] 刘文巧, 李臻, 夏春谷. 酸功能化离子液体固相催化材料的制备及应用[J]. 化学进展, 2018, 30(8): 1143-1160.
[9] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[10] 程海东, 陈双俊*. 功能化离子液体在聚酯PET降解与合成中的应用[J]. 化学进展, 2017, 29(4): 443-449.
[11] 陈兴鹏, 许家喜*. 非对称氮杂环丁烷的区域选择性开环反应[J]. 化学进展, 2017, 29(2/3): 181-197.
[12] 宋河远, 康美荣, 靳荣华, 金福祥, 陈静. 离子液体在羰基化反应中的应用[J]. 化学进展, 2016, 28(9): 1313-1327.
[13] 杨许召, 王军, 方云. 双阳离子液体的合成、性能及应用[J]. 化学进展, 2016, 28(2/3): 269-283.
[14] 李思琦, 许家喜*. 非对称氧杂环丁烷的选择性开环[J]. 化学进展, 2016, 28(12): 1798-1810.
[15] 孟艳山, 陈玉焕, 邓雨晨, 张姝明, 王桂香. 离子液体及离子液体膜在天然气净化方面的应用[J]. 化学进展, 2015, 27(9): 1324-1332.