English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

金属氧化物在低温燃料电池催化剂中的应用

张娜, 张生, 朱彤, 尹鸽平   

  1. 哈尔滨工业大学化工学院 哈尔滨 150001
  • 收稿日期:2011-03-01 修回日期:2011-06-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 张生, 尹鸽平 E-mail:zhangsheng1982@hit.edu.cn; yingphit@hit.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.50872027)和国家高技术发展计划(863)项目(No.2009AA05Z111)资助

Application of Metal Oxides in Electrocatalysts for Low Temperature Fuel Cells

Zhang Na, Zhang Sheng, Zhu Tong, Yin Geping   

  1. School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, China
  • Received:2011-03-01 Revised:2011-06-01 Online:2011-11-24 Published:2011-08-30

低温燃料电池具有比能量高、工作温度低、环境友好等优点,是一种颇具发展前景的便携式电源。但由于传统的Pt/C催化剂制造成本高,且电化学稳定性较低,影响了燃料电池的商业化进程。而金属氧化物在燃料电池工作环境下具有较高的电化学稳定性,同时与催化剂金属之间存在强烈的相互作用,能够改变氧气或燃料在催化剂金属表面上的吸附性质,从而改善催化剂的活性。本文针对低温燃料电池成本高和寿命短的两大问题,论述了金属氧化物助催化剂在提高催化剂活性和稳定性方面的应用,重点介绍了铌、锰、钛、钨和锡等几种金属元素的氧化物在低温燃料电池催化剂研究中进展,并对目前金属氧化物在低温燃料电池催化剂研究中存在的主要问题和发展前景进行了探讨和展望。

Low-temperature fuel cells can be as an ideal portable power, due to the high specific power and specific energy, low-temperature operation and environmentally friendly. It is considered to be a promising fuel cell. But owing to the high cost and low electrochemical stability of the traditional Pt/C catalyst, the commercialization of PEMFCs is hindered. Metal oxides, however, with high stability in the fuel cells work conditions, is beneficial to improve catalytic performance of catalysts due to strong interaction between metals and metal oxides, which might alert absorption properties of oxygen or fuel on the catalyst surface. In this paper, metal oxides as co-catalysts are employed to enhance the electrocatalytic activity and stability for fuel cell electrocatalysts. The latest research progress of niobium oxides, manganese oxides, titanium oxides, tungsten oxides and tin oxides in fuel cells is highlighted. Finally, the urgent existing main problems in this area are discussed and the future research trends are prospected.

Contents
1 Introduction
2 Research status of metal oxides in low-temperature fuel cells
2.1 Manganese oxides
2.2 Titanium oxides
2.3 Tin oxides
2.4 Tungsten oxides
2.5 Niobium oxides
2.6 Other metal oxides
3 Summary and prospects

中图分类号: 

()

[1] Li W Z, Sun G Q, Yan Y S, Qin X. Prog. Chem., 2005, 17: 761-772
[2] Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Appl. Catal. B-Environ., 2005, 56: 9-35
[3] Fan B, Guo Y G, Wan L J. Prog. Chem., 2010, 22: 852-860
[4] Shao Y, Zhang S, Wang C, Nie Z, Liu J, Wang Y, Lin Y. J. Power Sources, 2010, 195: 4600-4605
[5] 路蕾蕾(Lu L L), 尹鸽平(Yin G P). 化学进展(Prog. Chem.), 2010, 22: 338-344
[6] Chen J Y, Lim B, Lee E P, Xia Y N. Nano Today, 2009, 4: 81-95
[7] Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Science, 2007, 316: 732-735
[8] Zhang S, Shao Y Y, Yin G P, Lin Y H. Appl. Catal. B-Environ., 2011, 102: 372-377
[9] Lim B, Jiang M, Camargo P H C, Cho E C, Tao J, Lu X, Zhu Y, Xia Y. Science, 2009, 324: 1302-1305
[10] Zhang J, Sasaki K, Sutter E, Adzic R R. Science, 2007, 315: 220-222
[11] Lee H, Habas S E, Somorjai G A, Yang P. J. Am. Chem. Soc., 2008, 130: 5406-5407
[12] Zhang S, Shao Y, Liao H G, Liu J, Aksay I A, Yin G, Lin Y. Chem. Mater., 2011, 23: 1079-1081
[13] Wen Z, Liu J, Li J. Adv. Mater., 2008, 20: 743-747
[14] Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C, Liu Z, Kaya S, Nordlund D, Ogasawara H, Toney M F, Nilsson A. Nat. Chem., 2010, 2: 454-460
[15] Zhang S, Shao Y Y, Yin G P, Lin Y H. Angew. Chem. Int. Ed., 2010, 49: 2211-2214
[16] Wei Z D, Yan C, Tan Y, Li L, Sun C X, Shao Z G, Shen P K, Dong H W. J. Phys. Chem. C, 2008, 112: 2671-2677
[17] Huang Y, Zhou X, Liao J, Liu C, Lu T, Xing W. Electrochem. Commun., 2008, 10: 621-624
[18] Zhang S, Shao Y, Yin G, Lin Y. J. Mater. Chem., 2010, 20: 2826-2830
[19] Li L, Xing Y. J. Phys. Chem. C, 2007, 111: 2803-2808
[20] Shao Y, Liu J, Wang Y, Lin Y. J. Mater. Chem., 2009, 19: 46-59
[21] Hsin Y L, Hwang K C, Yeh C T. J. Am. Chem. Soc., 2007, 129: 9999-10010
[22] Wang J, Yin G, Shao Y, Wang Z, Gao Y. J. Phys. Chem. C, 2008, 112: 5784-5789
[23] Rajeswari J, Viswanathan B, Varadarajan T K. Mater. Chem. Phys., 2007, 106: 168-174
[24] Lima F H B, Calegaro M L, Ticianelli E A. J. Electroanal. Chem., 2006, 590: 152-160
[25] Cao Y L, Yang H X, Ai X P, Xiao L F. J. Electroanal. Chem., 2003, 557: 127-134
[26] Cheng F Y, Su Y, Liang J, Tao Z L, Chen J. Chem. Mat., 2010, 22: 898-905
[27] Xiao W, Wang D L, Lou X W. J. Phys. Chem. C, 2010, 114: 1694-1700
[28] Lima F H B, Calegaro M L, Ticianelli E A. Electrochim. Acta, 2007, 52: 3732-3738
[29] Adzic R R, Wang J X. J. Phys. Chem. B, 1998, 102: 8988-8993
[30] Wang Y X, Balbuena P B. J. Phys. Chem. B, 2004, 108: 4376-4384
[31] Roche I, Scott K. J. Appl. Electrochem., 2009, 39: 197-204
[32] Roche I, Chainet E, Chatenet M, Vondrak J. J. Phys. Chem. C, 2007, 111: 1434-1443
[33] Zhou C, Peng F, Wang H, Yu H, Peng C, Yang J. Electrochem. Commun., 2010, 12: 1210-1213
[34] Zhou C M, Wang H J, Peng F, Liang J H, Yu H, Yang J. Langmuir, 2009, 25: 7711-7717
[35] Longo A, Liotta L F, Di Carlo G, Giannici F, Venezia A M, Martorana A. Chem. Mater., 2010, 22: 3952-3960
[36] Vogel W, Timperman L, Alonsovante N. Appl. Catal. A-Gen., 2010, 377: 167-173
[37] Gustavsson M, Ekstrom H, Hanarp R, Eurenius L, Lindbergh G, Olsson E, Kasemo B. J. Power Sources, 2007, 163: 671-678
[38] Saida T, Naoki O, Yoshio T, Sugimoto W. J. Phys. Chem C, 2010, 114: 13390-13396
[39] Gojkovic S L, Babic B M, Radmilovic V R, Krstajic N V. J. Electroanal. Chem., 2010, 639: 161-166
[40] Wang D L, Subban C V, Wang H S, Rus E, DiSalvo F J, Abruna H D. J. Am. Chem. Soc., 2010, 132: 10218-10220
[41] Jiang Z, Wang Z, Chu Y, Gu D, Yin G. Energy Environ. Sci., 2011, 4: 728-735
[42] Bauer A, Lee K, Song C, Xie Y, Zhang J, Hui R. J. Power Sources, 2010, 195: 3105-3110
[43] Kim D S, Zeid E F A, Kim Y T. Electrochim. Acta, 2010, 55: 3628-3633
[44] Shanmugam S, Gedanken A. J. Phys. Chem. C, 2009, 113: 18707-18712
[45] Park K, Seol K. Electrochem. Commun., 2007, 9: 2256-2260
[46] Huang S, Ganesan P, Popov B N. Appl. Catal. B-Environ., 2010, 96: 224-231
[47] Santos A L, Profeti D, Olivi P. Electrochim. Acta, 2005, 50: 2615-2621
[48] Kowal A, Li M, Shao M, Sasaki K, Vukmirovic M B, Zhang J, Marinkovic N S, Liu P, Frenkel A I, Adzic R R. Nat. Mater., 2009, 8: 325-330
[49] Lee K, Park I, Cho Y, Jung D, Jung N, Park H, Sung Y. J. Catal., 2008, 258: 143-152
[50] Saha M S, Li R, Sun X. Electrochem. Commun., 2007, 9: 2229-2234
[51] Hung W Z, Chung W H, Tsai D S, Wilkinson D P, Huang Y S. Electrochim. Acta, 2010, 55: 2116-2122
[52] Sasaki K, Zhang L, Adzic R R. Phys. Chem. Chem. Phys., 2008, 10: 159-167
[53] Kou R, Shao Y, Mei D, Nie Z, Wang D, Wang C, Viswanathan V V, Park S, Aksay I A, Lin Y, Wang Y, Liu J. J. Am. Chem. Soc., 2011, 133: 2541-2547
[54] Du C, Chen M, Cao X, Yin G, Shi P. Electrochem. Commun., 2009, 11: 496-498
[55] Chhina H, Campbell S, Kesler O. J. Electrochem. Soc., 2007, 154: B533-B539
[56] Supothina S, Seeharaj P, Yoriya S, Sriyudthsak M. Ceram. Int., 2007, 33: 931-936
[57] Zhang Z, Wang X, Cui Z, Liu C, Lu T, Xing W. J. Power Sources, 2008, 185: 941-945
[58] Saha M S, Banis M N, Zhang Y, Li R, Sun X, Cai M, Wagner F T. J. Power Sources, 2009, 192: 330-335
[59] Ye J, Liu J, Zou Z, Gu J, Yu T. J. Power Sources, 2010, 195: 2633-2637
[60] Hou Z, Yi B, Yu H, Lin Z, Zhang H. J. Power Sources, 2003, 123: 116-125
[61] Kulesza P J, Grzybowska B, Malik M A, Galkowski M T. J. Electrochem. Soc., 1997, 144: 1911-1917
[62] Huang Y J, Dai H H, Li W S, Li G L, Shu D, Chen H Y. J. Power Sources, 2008, 184: 348-352
[63] Roh H, Potdar H S, Jun K, Han S, Kim J. Chem. Lett., 2004, 93: 203-207
[64] Aranda D A G, Schmal M. J. Catal., 1997, 171: 398-405
[65] Chun H, Kim D B, Lim D, Lee W, Lee H. Int. J. Hydrogen Energy, 2010, 35: 6399-6408
[66] Marques P, Ribeiro N F P, Schmal M, Aranda D A G, Souza M M V M. J. Power Sources, 2006, 158: 504-508
[67] Orilall M C, Matsumoto F, Zhou Q, Sai H, Abruna H D, DiSalvo F J, Wiesner U. J. Am. Chem. Soc., 2009, 131: 9389-9395
[68] Justin P, Hari K, Charan P, Ranga R G. Appl. Catal. B-Environ., 2010, 100: 510-515
[69] Takasu Y, Yoshinaga N, Sugimoto W. Electrochem. Commun., 2008, 10: 668-672
[70] El-Sayed H A, Birss V I. Nanoscale, 2010, 2: 793-798
[71] Zhou H, Wu H, Shen J, Yin A, Sun L, Yan C. J. Am. Chem. Soc., 2010, 132: 4998-4999
[72] Xu H, Hou X. Int. J. Hydrogen Energy. 2007, 32: 4397-4401
[73] Yuan H, Guo D, Li X, Yuan L, Zhu W, Chen L, Qiu X. Fuel Cells, 2009, 9: 121-127
[74] Wang J, Xi J, Bai Y, Shen Y, Sun J, Chen L, Zhu W, Qiu X. J. Power Sources, 2007, 164: 555-560
[75] Chang C H, Yuen T S, Nagao Y, Yugami H. J. Power Sources, 2010, 195: 5938-5941
[76] Scibioh M A, Kim S K, Cho E A, Lim T H, Hong S A, Ha H Y. Appl. Catal. B-Environ., 2008, 84: 773-782
[77] Zhang J, Vukmirovic M B, Xu Y, Mavrikakis M, Adzic R R. Angew. Chem. Int. Ed., 2005, 44: 2132-2135
[78] Zhang L, Wang L, Holt C M B, Navessin T, Malek K, Eikerling M H, Mitlin D. J. Phys. Chem. C, 2010, 114: 16463-16474

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[8] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[9] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[10] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[11] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[12] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[13] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[14] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[15] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.