English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

太阳能甲烷重整反应中的催化活性吸收体

桑丽霞, 孙彪, 李艳霞, 吴玉庭, 马重芳   

  1. 北京工业大学 环境与能源工程学院 传热强化与过程节能教育部重点实验室及传热与 能源利用北京市重点实验室 北京 100124
  • 收稿日期:2011-02-01 修回日期:2011-04-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 桑丽霞 E-mail:sanglixia@bjut.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2010CB227103)资助

Catalytically Active Absorber in Solar Reforming of Methane

Sang Lixia, Sun Biao, Li Yanxia, Wu Yuting, Ma Chongfang   

  1. Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Ministry of Education, Key Laboratory of Heat Transfer and Energy Conversion of Beijing Municipality, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
  • Received:2011-02-01 Revised:2011-04-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Sang Li-xia E-mail:sanglixia@bjut.edu.cn

太阳能甲烷重整反应可实现太阳能的高温蓄存和天然气资源的优化利用而备受关注,催化活性吸收体是进行太阳能吸收利用和甲烷催化重整的关键而成为太阳能甲烷重整反应研究的热点。本文在简述催化活性吸收体构成的基础上,结合重整反应器/接收器的发展,具体介绍了以多孔氧化铝和碳化硅陶瓷、泡沫金属及管状阵列陶瓷(“porcupine”)为基体的催化活性吸收体及其在太阳能甲烷重整反应中的应用,进而根据国内外的研究基础,分析探讨了今后的研究重点和发展方向。

Solar reforming of methane has attracted a great attention because this reaction can realize energy storage of high-temperature heat from concentrated solar radiation and optimal utilization of resources of natural gas. Catalytically active absorber has a key role on absorption of solar energy and reforming of methane and becomes focus of solar reforming of methane research. The article introduces that the composition of catalytically active absorber and three types of catalytically active absorbers in terms of their matrix (porous alumina and SiC ceramics, metal foam, ceramic tubular array (nicknamed “porcupine”)) combining the developments of reactor/receiver. Applied in directly irradiated solar reactor/receiver (volumetric reactor/receiver), the capability of catalytically active absorbers is mostly depended on the concentrated solar energy flux, matrix element, catalyst support (or washcoat) and active catalyst. According to the domestic and overseas researches, the future research directions and emphasis are analyzed and discussed. The future research should not only exploit the actual application system but also resolve the problem of uniform coating and combining between catalyst support and matrix for the high temperature reaction system. Photocatalytic enhancement of the reaction should also be taken into consideration, which will help to develop the cheap and efficient catalyst system.

Contents
1 Introduction
2 Catalytically active absorber of solar reforming of methane
2.1 Composition of catalytically active absorber
2.2 Porous alumina and SiC ceramic absorber
2.3 Metal foam absorber
2.4 “Porcupine” absorber
3 Analysis and prospects

中图分类号: 

()

[1] Steinfeld A. Encyclopedia of Physical Science and Technology, 2001, 15: 237-256
[2] Kodama T. Progress in Energy and Combustion Science, 2003, 29: 567-597
[3] Tamme R, Buck R, Epstein M, Fisher U, Sugarmen C. J. Sol. Energy Eng., 2001, 123(2): 160-163
[4] Bradford M C J, Vannice M A. Cat. Rev. Sci. Eng., 1999, 41(1): 1-42
[5] 居怀明(Ju H M). 徐元辉(Xu Y H). 钟大辛(Zhong D X). 清华大学学报(自然科学版) (Journal of Tsinghua University(Science and Technology)), 1995, 35(6): 59-63
[6] Buck R, Muir J F, Hogan R E, Skocypec R. Sol. Energy Mater., 1991, 24(1/4): 449-463
[7] Buck R, Abele M, Bauer H, Seitz A, Tamme R. J. Sol. Energy Eng., 1994, 116(2): 73-81
[8] Wrner A, Tamme R. Catal. Today, 1998, 46(2): 165-174
[9] 潘莹(Pan Y), 洪慧(Hong H), 金红光(Jin H G). 科技导报(Science & Technology Review), 2010, 28(7): 110-115
[10] 桑丽霞(Sang L X), 刘晓倩(Liu X Q), 黄莹(Huang Y), 李艳霞(Li Y X), 吴玉庭(Wu Y T), 马重芳(Ma C F). 天然气化工(Natural Gas Chemical Industry). 2009, 34(3): 67-71
[11] Rostrup-Nielsen J R, Bak Hansen J H. J. Catal., 1993, 144(1): 38-49
[12] Qin D, Lapszewicz J. Catal. Today, 1994, 21(2/3): 551-560
[13] 徐占林(Xu Z L), 毕颖丽(Bi Y L), 甄开吉(Zhen K J). 化学进展(Progess in Chemistry), 2000, 12(2): 121-130
[14] 许峥(Xu Z), 李玉敏(Li Y M), 张继炎(Zhang J Y), 张鎏(Zhang L), 韩森(Han S), 何菲(He F). 催化学报(Chinese Journal of Catalysis), 1997, 18(5): 410-413
[15] 江琦(Jiang Q), 邓国才(Deng G C), 陈荣悌(Chen R T), 黄仲涛(Huang Z T). 催化学报(Chinese Journal of Catalysis), 1997, 18(1): 5-8
[16] 路勇(Lu Y), 邓存(Deng C), 丁雪加(Ding X J ), 沈师孔(Shen S K). 催化学报(Chinese Journal of Catalysis), 1995, 16(6): 447-452
[17] 张美丽(Zhang M L), 季生福(Ji S F), 胡林华(Hu L H), 银凤翔(Yin F X), 李成岳(Li C Y), 刘辉(Liu H). 催化学报(Chinese Journal of Catalysis), 2006, 27(9): 777-782
[18] Steinfeld A. Solar Energy, 2005, 78(5): 603-615
[19] Anikeev V I, Bobrin A S, Ortner J, Schmidtb S, Funkenb K H, Kuzina N A. Solar Energy, 1998, 63(2): 97-104
[20] Kodama T, Moriyama T, Shimoyama T, Gokon N. J. Sol. Energy Eng., 2006, 118(4): 318-325
[21] Kodama T, Kiyama A, Moriyama T, Yokoyama T, Shimizu K I, Andou H, Satou N. Energy Fuels, 2003, 17(4): 914-921
[22] Gokon N, Yamawaki Y, Nakazawa D, Kodama T. Int. J. Hydrogen Energy, 2010, 35(14): 7441-7453
[23] Kodama T, Kiyama A, Shimizu K I. Energy Fuels, 2003, 17(1): 13-17
[24] Kodama T, Kiyama A, Moriyama T, Mizuno O. J. Sol. Energy Eng., 2004, 126(2): 808-811
[25] Gokon N, Osawa Y, Nakazawa D, Kodama T. Int. J. Hydrogen Energy, 2009, 34(4): 1787-1800
[26] Gokon N, Yamawaki Y, Nakazawa D, Kodama T. Int. J. Hydrogen Energy, 2011, 36(1): 203-215
[27] Gokon N, Murayama H, Nakazawa D, Nagasaki A. Solar Energy, 2009, 83(4): 527-537
[28] Gokon N, Kodama T, Imaizumi N, Umeda J, Seo T. Int. J. Hydrogen Energy, 2011, 36(3): 2014-2028
[29] Forni L. Catal. Today, 1999, 52: 147-152
[30] Kodama T, Ohtake H, Shimizu K I, Kitayama Y. Energy Fuels, 2002, 16(5): 1016-1023
[31] Pestryakov A N, Yurchenko E N, Feofilov A E. Catal. Today, 1996, 29(1): 67-70
[32] Pestryakov A N, Lunin V V, Devochkin A N, Petrov L A, Bogdanchikova N E, Petranovskii V P. Appl. Catal. A, 2002, 227(1/2): 125-130
[33] Sirijaruphan A, Goodwin J G, Rice J R W, Wei D G, Butcher K R, Roberts G W, Spivey J J. Appl. Catal. A, 2005, 281(1): 1-9
[34] Zhao C Y, Lu T J, Hodson H P. Int. J. Heat Mass Transfer, 2005, 48(12): 2452-2463
[35] Lu T J, Stone H A, Ashby M F. Acta Mater., 1998, 46(10): 3619-3635
[36] 杨立英(Yang L Y), 李成岳(Li C Y), 刘辉(Liu H). 催化学报(Chinese Journal of Catalysis), 2004, 25(4): 283-288
[37] 吴晓东(Wu X D), 翁端(Weng D), 陈震(Chen Z), 徐鲁华(Xu L H), 李恒德(Li H D). 清华大学学报(自然科学版) (Journal of Tsinghua University(Science and Technology)), 2002, 42(10): 1293-1296
[38] 王新昕(Wang X X), 郏景省(Jia J S), 穆昕(Mu X), 潘立卫(Pan L W), 王树东(Wang S D). 催化学报(Chinese Journal of Catalysis), 2008, 29(2): 99-101
[39] 胡海(Hu H), 肖文浚(Xiao W J), 袁坚(Yuan J), 施建伟(Shi J W), 上官文峰(Shangguan W F). 无机材料学报(Journal of Inorganic Materials), 2007, 22(2): 363-368
[40] Haas-Santo K, Fichtner M, Schubert K. Appl. Catal., A, 2001, 220(1): 79-92
[41] Karni J, Kribus A, Rubin R., Doron P. J. Sol. Energy Eng., 1998, 120(2): 85-95
[42] Berman A, Karn R K, Epstein M. Energy Fuels, 2006, 20(2): 455-462
[43] Gokon N, Inuta S, Yamashita S. Int. J. Hydrogen Energy, 2009, 34(17): 7143-7154

[1] 郭琪瑶, 段加龙, 赵媛媛, 周青伟, 唐群委. 混合能量采集太阳能电池―从原理到应用[J]. 化学进展, 2023, 35(2): 318-329.
[2] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[3] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[4] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[5] 曾毅, 任永生, 马文会, 陈辉, 詹曙, 曹静. 冶金法生产太阳能级硅的除硼方法、技术及工艺[J]. 化学进展, 2022, 34(4): 926-949.
[6] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[7] 杜宇轩, 江涛, 常美佳, 戎豪杰, 高欢欢, 尚玉. 基于非稠环电子受体的有机太阳能电池材料与器件[J]. 化学进展, 2022, 34(12): 2715-2728.
[8] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.
[9] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[10] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[11] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[12] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[13] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[14] 雷一帆, 雷圣宾, 朴玲钰. 光催化氧气还原制备H2O2[J]. 化学进展, 2021, 33(1): 66-77.
[15] 潘迪, 刘鹏, 张宏斌, 唐颐. 沸石的连续流动相合成[J]. 化学进展, 2020, 32(7): 873-881.