English
新闻公告
More
化学进展 前一篇   后一篇

• 综述与评论 •

半导体纳晶能级结构与电子性质的电化学研究

李运超1, 温婧1, 刘进进1, 姜峰1, 李永舫2   

  1. 1. 北京师范大学化学学院 北京 100875;
    2. 中国科学院化学研究所 北京 100190
  • 收稿日期:2011-01-01 修回日期:2011-05-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 李运超, 李永舫 E-mail:liyc@bnu.edu.cn;liyf@iccas.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.21003012,91023039)和北京分子科学国家实验室开放课题项目资助

Electrochemical Investigation of the Bandgap Structures and Electronic Properties of Semiconductor Nanocrystals

Li Yunchao1, Wen Jing1, Liu Jinjin1, Jiang Feng1, Li Yongfang2   

  1. 1. Department of Chemistry, Beijing Normal University, Beijing 100875, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2011-01-01 Revised:2011-05-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Li Yunchao, Li Yongfang E-mail:liyc@bnu.edu.cn;liyf@iccas.ac.cn

了解半导体纳晶能级结构特征和电子特性是其在光电子器件中应用的基础,电化学循环伏安技术提供了一种获取上述关键信息的有效途径。本文系统介绍了利用循环伏安技术探测纳晶能级结构与电子性质的原理、方法以及局限;在此基础上,着重从纳晶能级结构与电子性质的影响因素及规律、纳晶电荷输运性质、纳晶电化学反应机理等方面,综述了该方向近年来取得的研究进展;最后指出了目前研究中存在的问题,并预测了今后的发展方向。

The widespread application of semiconductor nanocrystals (SNCs) in optoelectronic devices urgently demands an exact knowledge regarding their band structures and electronic properties. Cyclic voltammetry (CV) technique has been proven to be a simple and effective approach to acquire above key information. In this paper, we firstly elaborate the mechanism, method and limitation of employing CV technique to examine SNCs. Then, we systemically review recent progress in electrochemical characterization of SNCs from following three aspects: the factors that influence the band structures and electronic properties of SNCs, the charge transport properties of SNCs, and electrochemical redox reaction mechanism of SNCs. Finally, we point out the technical and theoretical challenges existing in current research, and predict the promising solutions to such issues.

Contents
1 Introduction
2 The methods of employing CV technique to characterize SNCs
2.1 Solution based measuring method
2.2 Coating-film based measuring method
2.3 LB film-liked measuring method
2.4 Electrochemical gating based measuring method
3 Electrochemical probing of the effect of size, composition, morphology, and defects in SNCs
4 Electrochemical screening of electronic interaction between SNCs and their environment
5 Electrochemical interrogations of the charge transport properties and redox reaction mechanism of SNCs
6 Conclusion and outlook

中图分类号: 

()

[1] Murray C B, Norris D J, Bawendi M G. J. Am. Chem. Soc., 1993, 115: 8706-8715
[2] Murray C B, Kagan C R, Bawendi M G. Annu. Rev. Mater. Sci., 2000, 30: 545-610
[3] Huynh W U, Dittmer J J, Alivisatos A P. Science, 2002, 295: 2425-2427
[4] Gur I, Fromer N A, Geier M L, Alivisatos A P. Science, 2005, 310: 462-464
[5] Coe S, Woo W K, Bawendi M, Bulovic V. Nature, 2002, 420: 800-803
[6] Sun Q J, Wang Y A, Li L S, Wang D Y, Zhu T, Xu J, Yang C H, Li Y F. Nat. Photonics, 2007, 1: 717-722
[7] Borchert H. Energy Envir. Sci., 2010, 3: 1682-1694
[8] Reiss P, Couderc E, Girolamo J D, Pron A. Nanoscale, 2011, 3: 446-489
[9] 张胜坤 (Zhang S K), 朱海军 (Zhu H J), 蒋最敏(Jiang Z M), 胡冬枝(Hu D Z), 徐阿妹(Xu A M), 林峰(Lin F), 陆 昉(Lu F). 自然科学进展( Progress in Natural Science), 1998, 8: 496-501
[10] Anand S, Carisson N, Pistol M E. Appl. Phys. Lett., 1995, 67: 3016-3018
[11] Perego M, Seguini G, Scarel G, Fanciulli M. Surf. Interface Anal., 2006, 38: 494-497
[12] 曹立礼(Cao L L). 纳米材料表面电子结构分析 (Mapping Surface Electronic Structures of Nanomaterials ). 北京: 清华大学出版社 (Beijing: Tsinghua University Press), 2010, 120-150
[13] Singh J, Im J, Whitten J E, Soares J W, Steeves D M. Chem. Phys. Lett., 2010, 497: 196-199
[14] 陆赟豪(Lu Y H), 段效邦(Duan X B), 吕萍(Lü P), 张寒洁(Zhang H J), 李海洋(Li H Y), 鲍世宁(Pao S L), 何丕模(He P M). 物理学报(Acta Physica Sinica), 2005, 54: 4319- 4322
[15] Jdira L, Liljeroth P, Stoffels E, Vanmaekelbergh D, Speller S. Phys. Rev. B, 2006, 73: art. no. 115303
[16] Hipps K W. Handbook of Applied Solid State Spectroscopy. NY: Springer, 2006, 305-346
[17] Steiner D, Dorfs D, Banin U, Sala F D, Manna L, Millo O. Nano Lett., 2008, 8: 2954-2958
[18] Brus L E. J. Chem. Phys., 1983, 79: 5566-5571
[19] Wang L W, Zunger A. Phys. Rev. B, 1996, 53: 9579-9582
[20] Sapra S, Sarma D D. Phys. Rev. B, 2004, 69: art. no. 125304
[21] Eckhardt H, Shacklette L W, Jen K Y, Elsenbaumer R L. J. Chem. Phys., 1989, 91: 1303-1315
[22] Haram S K, Quinn B M, Bard A J. J. Am. Chem. Soc., 2001, 123: 8860-8861
[23] Yu D, Wang C J, Guyot-Sionnest P. Science, 2003, 300: 1277-1280
[24] Querner C, Reiss P, Sadki S, Zagorska M, Pron A. Phys. Chem. Chem. Phys., 2005, 7: 3204-3209
[25] Li Y F, Cao Y, Gao J, Wang D L, Yu G, Heeger A J. Synth. Met., 1999, 99: 243-248
[26] Skompska M. Synthetic Metals, 2010, 160: 1-15
[27] Kucur E, Riegler J, Urban G A, Nann T. J. Chem. Phys., 2003, 119: 2333-2337
[28] Greene I A, Wu F, Zhang J Z, Chen S W. J. Phys. Chem. B, 2003, 107: 5733-5739
[29] Bae Y, Myung N, Bard A J. Nano Lett., 2004, 4: 1153-1161
[30] Kucur E, Riegler J, Urban G A, Nann T. J. Chem. Phys., 2004, 120: 1500-1505
[31] Kumar S, Nann T. J. Mater. Res., 2004, 19: 1990-1994
[32] Poznyak S K, Osipovich N P, Shavel A, Talapin D V, Gao M, Eychmuller A, Gaponik N. J. Phys. Chem. B, 2005, 109: 1094-1100
[33] Kucur E, Bucking W, Giernoth R, Nann T. J. Phys. Chem. B, 2005, 109: 20355-20360
[34] Solomeshch O, Kigel A, Saschiuk A, Medvedev V, Aharoni A, Razin A, Eichen Y, Banin U, Lifshitz E, Tessler N. J. Appl. Phys., 2005, 98: art. no. 074310
[35] Li Y C, Zhong H Z, Li R, Zhou Y, Yang C H, Li Y F. Adv. Funct. Mater., 2006, 16: 1705-1716
[36] Kucur E, Bucking W, Arenz S, Giernoth R, Nann T. Chem. Phys. Chem., 2006, 7: 77-81
[37] Kuno M, Ahmad O, Protasenko V, Bacinello D, Kosel T H. Chem. Mater., 2006, 18: 5722-5732
[38] Geng B Y, Liu X W, Ma J Z, Du Q B, Zhang L D. Appl. Phys. Lett., 2007, 90: art. no. 183106
[39] Jiang X M, Schaller R D, Lee S B, Pietryga J M, Klimov V I, Zakhidov A A. J. Mater. Res., 2007, 22: 2204-2210
[40] Soreni-Harari M, Yaacobi-Gross N, Steiner D, Aharoni A, Banin U, Millo O, Tessler N. Nano Lett., 2008, 8: 678-684
[41] Kucur E, Bucking W, Nann T. Microchim. Acta, 2008, 160: 299-308
[42] Gaponik N, Poznyak S K, Osipovich N P, Shavel A, Eychmuller A. Microchim. Acta, 2008, 160: 327-334
[43] Aldakov D, Querner C, Kervella Y, Jousselme B, Demadrille R, Rossitto E, Reiss P, Pron A. Microchim. Acta, 2008, 160: 335-344
[44] Inamdar S N, Ingole P P, Haram S K. Chem. Phys. Chem., 2008, 9: 2574-2579
[45] Dissanayake D M N M, Lutz T, Curry R J, Silva S R P. Appl. Phys. Lett., 2008, 93: art. no. 043501
[46] Markus T Z, Wu M, Wang L, Waldeck D H, Oron D, Naaman R. J. Phys. Chem. C, 2009, 113: 14200-14206
[47] Zotti G, Vercelli B, Berlin A, Chin P T K, Giovanella U. Chem. Mater., 2009, 21: 2258-2271
[48] Franzman M A, Brutchey R L. Chem. Mater., 2009, 21: 1790-1792
[49] Kissling G P, Fermin D J. Phys. Chem. Chem. Phys., 2009, 11: 10080-10086
[50] Jiang F, Li Y C, Ye M F, Fan L Z, Ding Y Q, Li Y F. Chem. Mater., 2010, 22: 4632-4641
[51] Zhong H Z, Lo S S, Mirkovic T, Li Y C, Ding Y Q, Li Y F Scholes G D. ACS Nano, 2010, 4: 5253-5262
[52] Haram S K, Kshirsagar A, Gujarathi Y D, Ingole P P, Omkar A N, Markad G B, Nanavati S P. J. Phys. Chem. C, 2011, 115: 6243-6249
[53] Roest A L, Kelly J J, Vanmaekelbergh D, Meulenkamp E A. Phys. Rev. Lett., 2002, 89: art. no. 36801
[54] Vanmaekelbergh D, Liljeroth P. Chem. Soc. Rev., 2005, 34: 299-312
[55] Vanmaekelbergh D, Houtepen A J, Kelly J J. Electrochimica Acta, 2007, 53: 1140-1149
[56] Yu D, Wehrenberg B L, Jha P, Ma J, Guyot-Sionnest P. J. Appl. Phys., 2006, 99: art. no. 104315
[57] Guyot-Sionnest P. Microchim. Acta, 2008, 160: 309-314
[58] Jasieniak J, Mulvaney P. J. Am. Chem. Soc., 2007, 129: 2841-2848
[59] Li Y C, Tsang E M W, Chan A Y C, Yu H Z. Electrochem. Commun., 2006, 8: 951-955
[60] Camire N, Mueller-Westerhoff U T, Geiger W E. J. Organo- metal. Chem., 2001, 637/639: 823-826

[1] 杨上峰 刘富品 陈传宝 章文峰. 新型内嵌混合金属氮化物原子簇富勒烯的合成、结构与性质*[J]. 化学进展, 2010, 22(10): 1869-1881.
[2]

顾震宇,朱为宏,钟新华,

. 胶体半导体纳米晶的能带宽调控新方法*[J]. 化学进展, 2008, 20(05): 629-636.
[3] 武振羽,付立民,王永梅,王彦田,苗雁鸣,李前树,邹炳锁. 合成半导体胶体纳米晶的新方法*[J]. 化学进展, 2004, 16(01): 1-.