English
新闻公告
More
化学进展 前一篇   后一篇

• 特约稿 •

多蝶烯及其衍生物的合成与应用进展

曹菁, 江一, 陈传峰   

  1. 北京分子科学国家实验室 中国科学院化学研究所 分子识别与功能重点实验室 北京 100190
  • 收稿日期:2011-06-01 出版日期:2011-11-24 发布日期:2011-08-30
  • 通讯作者: 陈传峰 E-mail:cchen@iccas.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.20625206, 20772126)和国家重大科学研究计划项目(No.2011CB932501)资助

Advances on Synthesis and Applications of Iptycenes and Their Derivatives

Cao Jing, Jiang Yi, Chen Chuan-Feng   

  1. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2011-06-01 Online:2011-11-24 Published:2011-08-30
  • Contact: Chen Chuan-Feng E-mail:cchen@iccas.ac.cn

多蝶烯及其衍生物是一类具有独特三维刚性结构的芳香族化合物,它们由三个以上的独立苯环连接在 双环辛三烯片段上而形成,多蝶烯的概念是对三蝶烯概念的扩展。近年来,由于其特殊的刚性、芳香性以及三维骨架结构,该类化合物引起了人们越来越多的关注,并在超分子化学、材料化学、分子机器等许多领域得到了越来越广泛的应用。本文首先概述多蝶烯、多蝶烯醌及其衍生物的合成,然后重点介绍多蝶烯衍生物在共轭聚合物材料、有机多孔与低介电常数材料、化学传感、单层自组装结构、分子机器以及基于新型合成主体超分子化学等方面的应用研究进展。

Iptycenes and their derivatives are a class of structurally unique compounds consisting of more than three arene units fused together through a bicyclooctatriene framework. Iptycene is also extended triptycene, and it can be named after the number of arene planes separated by a bridgehead system. Pentiptycenes with five arene units are the most common members of iptycenes, and pentiptycene quinones are the most studied iptycene derivatives. Since they possess a rigid, aromatic, and three dimensional scaffold, iptycenes and their derivatives have been found more and more specific applications in supramolecular chemistry, material chemistry, molecular machines, etc. In this review, the synthesis of iptycenes, iptycene quinones and their derivatives is first highlighted, and then the recent progress in the applications of iptycene derivatives in conjugated polymeric materials, organic porous and low dielectric constant materials, chemical sensors, monolayer assemblied structures, molecular machinery, and supramolecular chemistry based on novel synthetic hosts are introduced.

Contents
1 Introduction
2 Synthesis of iptycenes and their derivatives
2.1 Synthesis of iptycenes
2.2 Synthesis of iptycene quinones
2.3 Derivatization of iptycene quinones
3 Applications of iptycenes and their derivatives
3.1 Conjugated polymeric materials
3.2 Organic porous and low dielectric constant materials
3.3 Chemical sensors
3.4 Monolayer assemblied structures
3.5 Molecular machinery
3.6 Supramolecular chemistry based on novel synthetic hosts
4 Conclusions and outlook

中图分类号: 

()

[1] Bartlett P D, Ryan M J, Cohen S G. J. Am. Chem. Soc., 1942, 64: 2649-2653
[2] Wittig G, Ludwig R. Angew. Chem., 1956, 68: 40-43
[3] Chen C F, Han T, Jiang Y. Chin. Sci. Bull., 2007, 52: 1349-1361
[4] Chong J H, MacLachlan M J. Chem. Soc. Rev., 2009, 38: 3301-3315
[5] Zhao L W, Li T, Wirth Z. Chem. Lett., 2010, 39: 658-667
[6] Chen C F. Chem. Commun., 2011, 1674-1688
[7] Hart H, Shamouilian S, Takehira Y. J. Org. Chem., 1981, 46: 4427-4432
[8] Yang J S, Yan J L. Chem. Commun., 2008, 1501-1512
[9] Skvarchenko V R, Shalaev V K. Dokl. Akad. Nauk SSSR Ser. Khim., 1974, 216: 110-114
[10] Hart H. Pure Appl. Chem., 1993, 65: 27-34
[11] Hart H, Bashir-Hashemi A, Luo J, Meador M A. Tetrahedron, 1986, 42: 1641-1654
[12] Hart H, Raju N, Meador M A, Ward D L. J. Org. Chem., 1983, 48: 4357-4360
[13] Bashir-Hashemi A, Hart H, Ward D L. J. Am. Chem. Soc., 1986, 108: 6675-6679
[14] Schlgl J, Krutler B. Synlett, 1999, (S1): 969-971
[15] Shahlai K, Hart H. J. Am. Chem. Soc., 1988, 110: 7136-7140
[16] Singh S B, Hart H. J. Org. Chem., 1990, 55: 3412-3415
[17] Vinod T K, Hart H. J. Am. Chem. Soc., 1990, 112: 3250-3252
[18] Vinod T K, Hart H. J. Org. Chem., 1991, 56: 5630-5640
[19] Wiehe A, Senge M O, Kurreck H. Liebigs Ann. Recl., 1997, 1951-1963
[20] Yang J S, Swager T M. J. Am. Chem. Soc., 1998, 120: 5321-5322
[21] Yang J S, Swager T M. J. Am. Chem. Soc., 1998, 120: 11864-11873
[22] Spyros S, Xanthopoulou N. Tetrahedron Lett., 2003, 44: 3767-3770
[23] Zhu X Z, Chen C F. J. Org. Chem., 2005, 70: 917-924
[24] Cao J, Lu H Y, Chen C F. Tetrahedron, 2009, 65: 8104-8112
[25] Lou K Y, Prior A M, Wiredu B, Desper J, Hua D H. J. Am. Chem. Soc., 2010, 132: 17635-17641
[26] Yang J S, Ko C W. J. Org. Chem., 2006, 71: 844-847
[27] Yang J S, Yan J L, Jin Y X, Sun W T, Yang M C. Org. Lett., 2009, 11: 1429-1432
[28] Zyryanov G, Palacios M A, Anzenbacher P. Org. Lett., 2008, 10: 3681-3684
[29] Webster O W. Polym. Prepr., 1993, 34: 98-100
[30] Yamaguchi S, Swager T M. J. Am. Chem. Soc., 2001, 123: 12087-12088
[31] Swager T M. Acc. Chem. Res., 2008, 41: 1181-1189
[32] Thomas S W, Joly G D, Swager T M. Chem. Rev., 2007, 107: 1339-1386
[33] Zahn S, Swager T M. Angew. Chem. Int. Ed., 2002, 41: 4225-4230
[34] Amara J P, Swager T M. Macromolecules, 2005, 38: 9091-9094
[35] Thomas S W, Swager T M. Adv. Mater., 2006, 18: 1047-1050
[36] Zhao D, Swager T M. Macromolecules, 2005, 38: 9377-9384
[37] Zhao D, Swager T M. Org. Lett., 2005, 7: 4357-4360
[38] Zhao X, Cardolaccia T, Farley R T, Abboud K A, Schanze K S. Inorg. Chem., 2005, 44: 2619-2627
[39] Yang J S, Liu C P, Lee G H. Tetrahedron Lett., 2001, 41: 7911-7915
[40] Long T M, Swager T M. J. Am. Chem. Soc., 2003, 125: 14113-14119
[41] Yang J S, Lin C S, Hwang C Y. Org. Lett., 2001, 3: 889-892
[42] Yang J S, Lee C C, Yau S L, Chang C C, Lee C C, Leu J M. J. Org. Chem., 2000, 65: 871-877
[43] Annunziata R, Benaglia M, Cinquini M, Raimondi L, Cozzi F. J. Phy. Org. Chem., 2004, 17: 749-751
[44] Yang J S, Huang Y T, Ho J H, Sun W T, Huang H H, Lin Y C, Huang S J, Huang S L, Lu H F, Chao I. Org. Lett., 2008, 10: 2279-2282
[45] Sun W T, Huang Y T, Huang G J, Lu H F, Chao I, Huang S L, Huang S J, Lin Y C, Ho J H, Yang J S. Chem. Eur. J., 2010, 16: 11594-11604
[46] Cao J, Jiang Y, Zhao J M, Chen C F. Chem. Comm., 2009, 1987-1989
[47] Cao J, Guo J B, Li P F, Chen C F. J. Org. Chem., 2011, 76: 1644-1652
[48] Cao J, Lu H Y, You X J, Zheng Q Y, Chen C F. Org. Lett., 2009, 11: 4446-4449
[49] Cao J, Lu H Y, Xiang J F, Chen C F. Chem. Commun., 2010, 3586-3588
[50] Cao J, Zhu X Z, Chen C F. J. Org. Chem., 2010, 75: 7420-7423

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[6] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[9] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[10] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[11] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[12] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[13] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[14] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[15] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.