English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2169-2176 前一篇   

• 综述与评论 •

微藻脂肪合成与代谢调控

朱顺妮1, 王忠铭1, 尚常花1, 周卫征1,2, 杨康1, 袁振宏1*   

  1. 1. 中国科学院广州能源研究所 可再生能源与天然气水合物重点实验室 广州 510640;
    2. 华南农业大学生命科学学院 广州 510642
  • 收稿日期:2011-01-01 修回日期:2011-05-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:yuanzh@ms.giec.ac.cn
  • 基金资助:

    广东省自然科学基金项目(No.10451007006006001)、广东省中科院全面战略合作项目(No.2010A090100010)和中科院可再生能源与天然气水合物重点实验室基金项目(O907jd)资助

Lipid Biosynthesis and Metabolic Regulation in Microalgae

Zhu Shunni1, Wang Zhongming1, Shang Changhua1, Zhou Weizheng1,2, Yang Kang1, Yuan Zhenhong1*   

  1. 1. Key Laboratory of Renewable Energy and Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China;
    2. College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
  • Received:2011-01-01 Revised:2011-05-01 Online:2011-10-24 Published:2011-09-15

随着能源与环境问题的日益严峻,利用微藻生产生物柴油已经成为研究者们关注的焦点。与传统油料作物相比,微藻具有生长速度快、含油量高、不占用耕地等优势,是极具潜力的生物燃料生产原料。虽然许多微藻在压力条件下会在细胞内积累脂肪,特别是中性脂肪三酰甘油(TAG),它是生产生物柴油的主要原料,但目前对于微藻脂肪的合成和代谢调控还了解的很少。为了更好地理解和操纵微藻脂肪代谢以增强脂肪积累,本文综述了微藻脂肪合成与代谢调控的研究进展,包括TAG生物合成途径,提高脂肪积累的生化调控和基因工程策略,阐述了营养控制对脂肪积累的影响,总结了增强脂肪酸合成途径、增强Kennedy途径、调控TAG旁路途经、抑制脂肪合成的竞争途径、抑制脂肪的分解代谢等5种基因工程策略,同时也对微藻脂肪代谢研究的发展进行了展望。

With the increasingly severe energy and environmental problems, biodiesel from microalgae has become a hot topic. Compared with traditional oil crops, microalgae have advantages of rapid growth, high lipid content, non-occupation of arable land, etc., which have been considered as a highly potential feedstock of biofuels. Although neutral lipids, especially triacylglycerols (TAG) which are the main feedstock of biodiesel production, can be accumulated in many algal cells under stress conditions, little is known about microalgal lipid synthesis and metabolic regulation so far. In order to better understand and manipulate microalgal lipid metabolism for improvement of lipid production, we present an overview of advances of lipid biosynthesis and metabolic regulation in microalgae, including TAG biosynthesis pathway, biochemical regulation and genetic engineering strategies. Effects of nutrition on lipid production are represented. Five genetic engineering strategies are summarized including enhancement of fatty acids synthesis pathway, enhancement of Kennedy pathway, regulation of alternative pathway of TAG, inhibition of competing pathway of lipid biosynthesis and lipid catabolism. The prospects of research on microalgal lipid metabolism are also discussed.

Contents
1 Introduction
2 TAG biosynthesis pathways
2.1 Fatty acids synthesis pathway
2.2 Kennedy pathway
3 Biochemical regulation of lipid accumulation
4 Genetic engineering strategies of lipid accumulation
4.1 Enhancement of fatty acids synthesis pathway
4.2 Enhancement of Kennedy pathway
4.3 Regulation of alternative pathway of TAG
4.4 Inhibition of competing pathway of lipid biosynthesis
4.5 Inhibition of lipid catabolism
5 Conclusion and prospects

中图分类号: 

()

[1] Williams P J L, Laurens L M L. Energy Environ. Sci., 2010, 3(5): 554-590
[2] 童牧(Tong M), 周志刚(Zhou Z G). 农业工程技术: 新能源产业(Agricultural Engineering Technology: New Energy Industry), 2009, (5):19-26
[3] Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A, Plant J., 2008, 54(4): 621-639
[4] Verma N, Mehrotra S, Shukla A, Mishra B. Afr. J. Biotechnol., 2010, 9(10): 1402-1411
[5] Chisti Y. Biotechnol. Adv., 2007, 25(3): 294-306
[6] Radakovits R, Jinkerson R E, Darzins A, Posewitz M C. Eukaryot. Cell, 2010, 9(4): 486-501
[7] Courchesne N M D, Parisien A, Wang B, Lan C Q. J. Biotechnol., 2009, 141(1/2): 31-41
[8] Greenwell H C, Laurens L M L, Shields R J, Lovitt R W, Flynn K J. J. R. Soc. Interface, 2010, 7(46): 703-726
[9] Murphy D J. Prog. Lipid Res., 2001, 40(5): 325-438
[10] 夏晗(Xia H), 王兴军(Wang X J), 李孟军(Li M J), 肖寒(Xiao H). 生物工程学报(Chin. J. Biotech.), 2010, 26(6): 735-743
[11] Illman A M, Scragg A H, Shales S W. Enzyme Microb. Tech., 2000, 27(8): 631-635
[12] Kawata M, Nanba M, Matsukawa R, Chihara M, Karube I. Stud. Surf. Sci. Catal., 1998, 114: 637-640
[13] Tornabene T G, Holzer G, Lien S, Burris N. Enzyme Microb. Tech., 1983, 5(6): 435-440
[14] Li Y, Horsman M, Wang B, Wu N, Lan C Q. Appl. Microbiol. Biotechnol., 2008, 81(4): 629-636
[15] Khozin-Goldberg I, Cohen Z. Phytochemistry, 2006, 67(7): 696-701
[16] Roessler P G. Arch. Biochem. Biophys., 1988, 267(2): 521-528
[17] Liu Z Y, Wang G C, Zhou B C. Bioresource Technol., 2008, 99(11): 4717-4722
[18] Takagi M, Yoshida T. J. Biosci. Bioeng., 2006, 101(3): 223-226
[19] 姚茹(Yao R), 程丽华(Cheng L H), 徐新华(Xu X H), 张林(Zhang L), 陈欢林(Chen H L). 化学进展(Progress in Chemistry), 2010, 22(6): 1221-1232
[20] Wang B, Li Y, Wu N, Lan C. Appl. Microbiol. Biotechnol., 2008, 79(5): 707-718
[21] Scragg A H, Illman A M, Carden A, Shales S W. Biomass Bioenergy, 2002, 23(1): 67-73
[22] Rodolfi L, Zittelli G C, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M R. Biotechnol. Bioeng., 2009, 102(1): 100-112
[23] Roessler P G. Plant Physiol., 1990, 92: 73-78
[24] Dunahay T, Jarvis E, Dais S, Roessler P. Appl. Biochem. Biotech., 1996, 57/58(1): 223-231
[25] Sheehan J, Dunahay T, Benemann J, Roessler P. A Look Back at the US Department of Energy's Aquatic Species Program: Biodiesel from Algae. NREL/TP-580-24190, 1998. 67-139
[26] Verwoert I I G S, Linden K H, Walsh M C, Nijkamp H J J, Stuitje A R. Plant Mol. Biol., 1995, 27(5): 875-886
[27] Dehesh K, Tai H, Edwards P, Byrne J, Jaworski J G. Plant Physiol., 2001, 125(2): 1103-1114
[28] Vigeolas H, Waldeck P, Zank T, Geigenberger P. Plant Biotechnol. J., 2007, 5(3): 431-441
[29] Jain R K, Coffey M, Lai K, Kumar A, MacKenzie S L. Biochem. Soc. T., 2000, 28: 958-961
[30] Taylor D C, Katavic V, Zou J T, MacKenzie S L, Keller W A, An J, Friesen W, Barton D L, Pedersen K K, Giblin E M, Ge Y, Dauk M, Sonntag C, Luciw T, Males D. Mol. Breeding, 2002, 8(4): 317-322
[31] Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Plant Physiol., 2010, 152(2): 670-684
[32] Lardizabal K, Effertz R, Levering C, Mai J, Pedroso M C, Jury T, Aasen E, Gruys K, Bennett K. Plant Physiol., 2008, 148(1): 89-96
[33] Zheng P, Allen W B, Roesler K, Williams M E, Zhang S, Li J, Glassman K, Ranch J, Nubel D, Solawetz W, Bhattramakki D, Llaca V, Deschamps S, Zhong G Y, Tarczynski M C, Shen B. Nat. Genet., 2008, 40(3): 367-372
[34] Snyder C L, Yurchenko O P, Siloto R M P, Chen X, Liu Q, Mietkiewska E, Weselake R J. New Biotechnol., 2009, 26(1/2): 11-16
[35] Xu J Y, Zheng Z F, Zou J T. Botany., 2009, 87(6): 544-551
[36] Zou J, Xu J, Zheng Z. WO/2009/085169, 2009
[37] Wagner M, Hoppe K, Czabany T, Heilmann M, Daum G, Feussner I, Fulda M. Plant Physiol. Biochem., 2010, 48(6): 407-416
[38] Khozin-Goldberg I, Cohen Z. Biochimie. 2011, 93(1): 91-100
[39] Arabolaza A, Rodriguez E, Altabe S, Alvarez H, Gramajo H. Appl. Environ. Microbiol., 2008, 74(9): 2573-2582
[40] Dahlqvist A, Sthl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S. P. Natl. Acad. Sci. USA, 2000, 97(12): 6487-6492
[41] Paul-André S, Norio M. Lipids in Photosynthesis: Structure, Function and Genetics (Advances in Photosynthesis and Respiration). Springer Netherlands, 2004. 53-64
[42] Cho S H, Thompson G A. Biochim. Biophys. Acta. Lipids Lipid Metabol., 1986, 878(3): 353-359
[43] Roessler P G. J. Phycol., 1988, 24(3): 394-400
[44] Ball S G, Morell M K. Annu. Rev. Plant Biol., 2003, 54: 207-233
[45] Ruuska S, Girke T, Benning C, Ohlrogge J. Plant Cell, 2002, 14(6): 1191-1206
[46] Vigeolas H, Mohlmann T, Martini N, Neuhaus H, Geigenberger P. Plant Physiol., 2004, 136(1): 2676-2686
[47] Wang Z T, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. Eukaryot. Cell, 2009, 8(12): 1856-1868
[48] Li Y T, Han D X, Hu G R, Sommerfeld M, Hu Q. Biotechnol. Bioeng., 2010, 107(2): 258-268
[49] Li Y T, Han D X, Hu G R, Dauvillee D, Sommerfeld M, Ball S, Hu Q. Metab Eng., 2010, 12(4): 387-391
[50] Zabawinski C, van Den Koornhuyse N, D'Hulst C, Schlichting R, Giersch C, Delrue B, Lacroix J-M, Preiss J, Ball S. J. Bacteriol., 2001, 183(3): 1069-1077
[51] Ramazanov A, Ramazanov Z. Phycol. Res., 2006, 54(4): 255-259
[52] Germain V, Rylott E L, Larson T R, Sherson S M, Bechtold N, Carde J P, Bryce J H, Graham I A, Smith S M. Plant J., 2001, 28(1): 1-12
[53] Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J. Plant Physiol., 1997, 113(1): 75-81
[54] Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J. Plant Cell, 2010, 22(9): 2943-2955

[1] 冯国栋, 程丽华*, 徐新华, 张林, 陈欢林. 微藻高油脂化基因工程研究策略[J]. 化学进展, 2012, 24(07): 1413-1426.
[2] 姚茹 程丽华 徐新华 张林 陈欢林. 微藻的高油脂化技术[J]. 化学进展, 2010, 22(06): 1221-1232.
[3] 杨晓达,常文保,慈云祥. 免疫分析法进展[J]. 化学进展, 1995, 7(02): 83-.
阅读次数
全文


摘要

微藻脂肪合成与代谢调控