English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2160-2168 前一篇   后一篇

• 综述与评论 •

生物材料表面性能调控骨髓间充质干细胞分化

王玮, 李博, 高长有*   

  1. 教育部高分子合成与功能构造重点实验室 浙江大学高分子科学与工程学系 杭州 310027
  • 收稿日期:2011-01-01 修回日期:2011-03-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:cygao@mail.hz.zj.cn, cygao@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20934003)和国家重点基础研究发展计划(973)项目(No. 2011CB606203)资助

Modulating the Differentiation of BMSCs by Surface Properties of Biomaterials

Wang Wei, Li Bo, Gao Changyou*   

  1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2011-01-01 Revised:2011-03-01 Online:2011-10-24 Published:2011-09-15

结合细胞和生物可降解支架的组织工程和再生医学技术为组织、器官的修复和再生提供了一种新途径。骨髓间充质干细胞(BMSCs)具有多向分化潜能,因其取材简单、来源广泛、增殖能力强,无伦理争议,免疫排斥反应小而备受关注。BMSCs在特定区域定向分化成为靶细胞是干细胞治疗的一个重要前提,尤其受到生物材料表面正负电荷、亲疏水和不同的拓扑结构的影响。材料表面涂层蛋白或接枝多肽能够促进BMSCs的分化能力,而生物材料不同的机械性能、几何形状也会影响BMSCs的分化方向。本文综述了近期生物材料调控BMSCs分化的研究结果,为基于BMSCs的组织工程和再生医学材料的设计提供借鉴和指导。

Tissue engineering and regenerative medicine uses seed cells and biodegradable scaffolds to realize tissue regeneration. Interactions between the cells, especially the stem cells, biomaterials take a pivotal factor in regulating structures and functions of the regenerated tissues. Recent focus has been moving to bone marrow mesenchymal stem cells (BMSCs) in terms of biomedical applications because of their ease of isolation and expansion, multipotency and low immunogenicity. However, in order to better utilize their therapeutic potentials it is extremely important to stimulate the desired differentiation while avoid undesired differentiation. The differentiation of BMSCs is regulated by the cell microenvironment or niche. Meanwhile, the biomaterials acted as the carriers or scaffolds of BMSCs with different properties will have a great impact on their differentiation, and in some cases control the fate of BMSCs. The surface charge, hydrophilicity and hydrophobicity as well as surface morphology have an ability to define the differentiation of BMSCs to osteoblasts or chondrocytes. A surface coating or grafting technique is employed to promote the differentiation of BMSCs to targeted cells. More recent results show that the differentiation of BMSCs is also induced by viscoelasticity and geometry of the biomaterials. This article reviews the recent progress in BMSCs differentiation governed by different properties of biomaterials, which may provide a reference to design the scaffolds for accommodation and applications of BMSCs in regenerative medicine.

Contents
1 Introduction
2 Modulating the differentiation of BMSCs by biomaterials' properties
2.1 Influence of surface charge of biomaterials on the differentiation of BMSCs
2.2 Influence of surface wettability of biomaterials on the differentiation of BMSCs
2.3 Influence of functional groups and surface coating of biomaterials on the differentiation of BMSCs
2.4 Influence of peptides in biomaterials on the differentiation of BMSCs
2.5 Influence of biomaterials elasticity on the differentiation of BMSCs
2.6 Influence of biomaterials' morphology on the differentiation of BMSCs
3 Conclusion and perspectives

中图分类号: 

()

[1] Hollister S J. Nat. Mater., 2005, 4: 518-524
[2] Huang N F, Li S. Regen. Med., 2008, 3: 877-892
[3] Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M. Osteoarthritis and Cartilage, 2007, 15: 226-231
[4] Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S. Cell Transplantation, 2004, 13: 595-600
[5] Parekkadan B, Milwid J M. Annu. Rev. Biomed. Eng., 2010, 12: 87-117
[6] Li Y M, Schilling T, Benisch P, Zeck S, Meissner-Weigl J, Schneider D, Limbert C, Seufert J, Kassem M, Schutze N, Jakob F, Ebert R. Biochem. Biophys. Res. Commun., 2007, 363: 209-215
[7] Yang Y, Tao C, Zhao D, Li F, Zhao W, Wu H. Bioelectromagnetics, 2010, 31: 277-285
[8] Dawson E, Mapili G, Erickson K, Taqvi S, Roy K. Adv. Drug. Deliv. Rev., 2008, 60: 215-228
[9] Guo L K, Fan Y J, Kawazoe N, Chen G P, Tanaka J, Tateishi T, Zhang X D. Bioceramics, 2007, 19: 1189-1192
[10] Guo L, Kawazoe N, Fan Y, Ito Y, Tanaka J, T Tateishi, Zhang X D, Chen G P. Biomaterials, 2008, 29: 23-32
[11] Guo L, Kawazoe N, Hoshiba T, Tateishi T, Chen G P, Zhang X D. J. Biomed. Mater. Res. A, 2008, 87: 903-912
[12] Olivares-Navarrete R, Hyzy S L, Hutton D L, Erdman C P, Wieland M, Boyan B D, Schwartz Z. Biomaterials, 2010, 31: 2728-2735
[13] Aita H, Att W, Ueno T, Yamada M, Hori N, Iwasa F, Tsukimura N, Ogawa T. Acta Biomater., 2009, 5: 3247-3257
[14] Curran J M, Tang Z, Hunt J A. J. Biomed. Mater. Res. A, 2009, 89A: 1-12
[15] Ivirico J L, Salmeron-Sanchez M, Ribelles J L, Pradas M M, Soria J M, Gomes M E, Reis R L, Mano J F. J. Biomed. Mater. Res. B, 2009, 91: 277-286
[16] Park H, Guo X, Temenoff J S, Tabata Y, Caplan A I, Kasper F K, Mikos A G. Biomacromolecules, 2009, 10: 541-546
[17] Keselowsky B G, Collard D M, Garcia A J. J. Biomed. Mater. Res. A, 2003, 66: 247-259
[18] Keselowsky B G, Collard D M, Garcia A J. Biomaterials, 2004, 25: 5947-5954
[19] Curran J M, Chen R, Hunt J A. Biomaterials, 2006, 27: 4783-4793
[20] Curran J M, Chen R, Hunt J A. Biomaterials, 2005, 26: 7057-7067
[21] Benoit D S, Schwartz M P, Durney A R, Anseth K S. Nat. Mater., 2008, 7: 816-823
[22] Suzuki S, Narita Y, Yamawaki A, Murase Y, Satake M, Mutsuga M, Okamoto H, Kagami H, Ueda M, Ueda Y. Cells Tissues Organs, 2010, 191: 269-280
[23] Sogo Y, Ito A, Matsuno T, Oyane A, Tamazawa G, Satoh T, Yamazaki A, Uchimura E, Ohno T. Biomed. Mater., 2007, 2: 116-123
[24] Kim H J, Lee J H, Im G I. J. Biomed. Mater. Res. A, 2010, 92: 659-666
[25] Lu Y, Mapili G, Suhali G, Chen S, Roy K. J. Biomed. Mater. Res. A, 2006, 77: 396-405
[26] Mauney J, Volloch V. Matrix. Biol., 2009, 28: 239-250
[27] Mauney J R, Kirker-Head C, Abrahamson L, Gronowicz G, Volloch V, Kaplan D L. J. Biomed. Mater. Res. A, 2006, 79A: 464-475
[28] Kundu A K, Putnam A J. Biochem. Biophys. Res. Commun., 2006, 347: 347-357
[29] Mruthyunjaya S, Manchanda R, Godbole R, Pujari R, Shiras A, Shastry P. Biochem. Biophys. Res. Commun., 2010, 391: 43-48
[30] Qian L C, Saltzman W M. Biomaterials, 2004, 25: 1331-1337
[31] Cai K, Lai M, Yang W, Hu R, Xin R, Liu Q, Sung K L. Acta Biomater., 2010, 6: 2314-2321
[32] Raucci M G, D'Anto V, Guarino V, Sardella E, Zeppetelli S, Favia P, Ambrosio L. Acta Biomater., 2010, 6 :4090-4099
[33] Stiehler M, Lind M, Mygind T, Baatrup A, Dolatshahi-Pirouz A, Li H, Foss M, Besenbacher F, Kassem M, Bunger C. J. Biomed. Mater. Res. A, 2008, 86: 448-458
[34] 李长文(Li C W), 郑启新(Zhen Q X), 郭晓东(Guo X D), 全大萍(Quan D P), 赵洁(Zhao J). 中国生物医学工程学报(Chinese Journal of Biomedical Engineering), 2006, 25: 142-146
[35] 段智霞(Duan Z X), 郑启新(Zhen Q X),郭晓东(Guo X D),白玉(Bai Y),袁泉(Yuan Q),陈顺广(Chen G S). 中国矫形外科杂志(Orthopedic Journal of China), 2007, 15: 1647-1650
[36] Chun C, Lim H J, Hong K Y, Park K H, Song S C. Biomaterials, 2009, 30: 6295-6308
[37] Salinas C N, Cole B B, Kasko A M, Anseth K S. Tissue Eng., 2007, 13: 1025-1034
[38] Lee H J, Yu C, Chansakul T, Hwang N S, Varghese S, Yu S M, Elisseeff J H. Tissue Eng. Part A, 2008, 14: 1843-1851
[39] Chen Z X, Chang M, Peng Y L, Zhao L, Zhan Y R, Wang L J, Wang R. Regulatory Peptides, 2007, 142: 16-23
[40] Kloxin A M, Kasko A M, Salinas C N, Anseth K S. Science, 2009, 324: 59-63
[41] Martino M M, Mochizuki M, Rothenfluh D A, Rempel S A, Hubbell J A, Barker T H. Biomaterials, 2009, 30: 1089-1097
[42] Reilly G C, Engler A J. J. Biomech., 2010, 43:55-62
[43] Engler A J, Sen S, Sweeney H L, Discher D E. Cell, 2006, 126: 677-689
[44] Seib F P, Prewitz M, Werner C, Bornhauser M. Biochem. Biophys. Res. Commun., 2009, 389: 663-667
[45] Erickson I E, Huang A H, Sengupta S, Kestle S, Burdick J A, Mauck R L. Osteoarthritis and Cartilage, 2009, 17: 1639-1648
[46] Takamoto T, Hiraoka Y, Tabata Y. J. Biomater. Sci. Polym. Ed., 2007, 18: 865-881
[47] Vickers S M, Gotterbarm T, Spector M. J. Orthop. Res., 2010, 28:1184-1192
[48] Rowlands A S, George P A, Cooper-White J J. Am. J. Physiol. Cell Physiol., 2008, 295: 1037-1044
[49] Balloni S, Calvi E M, Damiani F, Bistoni G, Calvitti M, Locci P, Becchetti E, Marinucci L. Int. J. Oral. Maxillofac. Implants, 2009, 24: 627-635
[50] Ruckh T T, Kumar K, Kipper M J, Popat K C. Acta Biomater., 2010, 6: 2949-2959
[51] Thibault R A, Baggett L S, Mikos A G, Kasper F K. Tissue. Eng. Part A, 2010, 16: 431-440
[52] Cho Y I, Choi J S, Jeong Y, Yoo H S. Acta Biomaterialia, 2010, 6: 4725-4733
[53] Takahashi Y, Tabata Y. J. Biomater. Sci. Polym. Ed., 2004, 15: 41-57
[54] Li J J, Dou Y, Yang J, Yin Y J, Zhang H, Yao F L, Wang H B, Yao K D. Mater. Sci. Eng.: C, 2009, 29: 1207-1215
[55] Wang W, Itaka K, Ohba S, Nishiyama N, Chung U I, Yamasaki Y, Kataoka K. Biomaterials, 2009, 30: 2705-2715
[56] D'Angelo F, Armentano I, Mattioli S, Crispoltoni L, Tiribuzi R, Cerulli G G, Palmerini C A, Kenny J M, Martino S, Orlacchio A. European Cells & Materials, 2010, 20: 231-244
[57] Tang J, Peng R, Ding J. Biomaterials, 2010, 31: 2470-2476
[58] McBeath R, Pirone D M, Nelson C M, Bhadriraju K, Chen C S. Dev. Cell, 2004, 6: 483-495
[59] Dalby M J, Gadegaard N, Tare R, Andar A, Riehle M O, Herzyk P, Wilkinson C D, Oreffo R O. Nat. Mater., 2007, 6: 997-1003
[60] Oh S, Brammer K S, Li Y S, Teng D, Engler A J, Chien S, Jin S. Proc. Natl. Acad. Sci. USA, 2009, 106: 2130-2135
[61] Von der Mark K, Bauer S, Park J, Schmuki P. Proc. Natl. Acad. Sci. USA, 2009, 106: E60; author reply E61
[62] Marletta G, Ciapetti G, Satriano C, Perut F, Salerno M, Baldini N. Biomaterials, 2007, 28: 1132-1140
[63] Ruiz S A, Chen C S. Stem Cells, 2008, 26: 2921-2927
[64] Fisher O Z, Khademhosseini A, Langer R, Peppas N A. Acc. Chem. Res., 2010, 43: 419-428
[65] Lutolf M P, Blau H M. Adv. Mater., 2009, 21: 3255-3268

[1] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[2] 赵睿, 杨晓, 朱向东, 张兴栋. 微量元素锶掺杂生物材料在骨修复领域的应用[J]. 化学进展, 2021, 33(4): 533-542.
[3] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[4] 韩毅, 董海青, 李胜, 李维达, 李永勇. 胰岛封装技术及其在胰岛移植中的应用[J]. 化学进展, 2018, 30(11): 1660-1668.
[5] 蒋敏, 王敏, 魏仕勇, 陈志宝, 木士春. 基于静电纺丝技术的取向纳米纤维[J]. 化学进展, 2016, 28(5): 711-726.
[6] 刘宗光, 屈树新, 翁杰. 聚多巴胺在生物材料表面改性中的应用[J]. 化学进展, 2015, 27(2/3): 212-219.
[7] 程新峰, 金勇, 漆锐, 樊宝珠, 李汉平. 刺激响应降解型聚合物水凝胶[J]. 化学进展, 2015, 27(12): 1784-1798.
[8] 刘小波, 寇宗魁, 木士春. 多孔石墨烯材料[J]. 化学进展, 2015, 27(11): 1566-1577.
[9] 许利娜, 马培培, 陈强, 林思聪, 沈健. 甲基丙烯酰乙基磺基甜菜碱类聚合物的生物应用[J]. 化学进展, 2014, 26(0203): 366-374.
[10] 李春鸽, 赵爽, 李俊杰, 尹玉姬*. 含巯基/二硫键聚合物生物材料[J]. 化学进展, 2013, 25(01): 122-134.
[11] 马梦佳, 陈玉云, 闫志强, 丁剑, 何丹农*, 钟建*. 原子力显微镜在纳米生物材料研究中的应用[J]. 化学进展, 2013, 25(01): 135-144.
[12] 唐诗洋, 孙晓君, 林丽, 孙艳, 刘献斌. 单分散介孔氧化硅纳米颗粒的制备及其在生物材料方面的应用[J]. 化学进展, 2011, 23(9): 1973-1984.
[13] 邢东明, 马列, 高长有. 取向结构和梯度分布医用材料的制备及应用[J]. 化学进展, 2011, 23(12): 2550-2559.
[14] 邱媛 章继川 高长有. 用于肝细胞球形聚集体培养的生物材料*[J]. 化学进展, 2010, 22(09): 1826-1835.
[15] 何淑漫 周健. 抗凝血生物材料*[J]. 化学进展, 2010, 22(04): 760-772.