English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2151-2159 前一篇   后一篇

• 综述与评论 •

微波波谱法研究分子系统内基团大幅度运动动力学

唐守渊1,2, 付钰洁3, 夏之宁2,4, 李百战1,2*   

  1. 1. 重庆大学三峡库区生态环境教育部重点实验室 重庆 400030;
    2. 重庆大学城市建设与环境工程学院 重庆 400030;
    3. 重庆理工大学药学与生物工程学院 重庆 400050;
    4. 重庆大学化学化工学院 重庆 400044
  • 收稿日期:2011-01-01 修回日期:2011-04-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:Baizhanli@cqu.edu.cn
  • 基金资助:

    重庆市自然科学基金支持项目(CSTC,2009BB5054)和三峡库区生态环境教育部重点实验室访问学者项目资助

Exploring Dynamics of Large Amplitude Internal Motions of Molecular Systems by Microwave Spectroscopy

Tang Shouyuan1,2, Fu Yujie3, Xia Zhining2,4, Li Baizhan1,2*   

  1. 1. Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment of Ministry of Education, Chongqing University, Chongqing 400030, China;
    2. College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400030, China;
    3. College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, China;
    4. College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2011-01-01 Revised:2011-04-01 Online:2011-10-24 Published:2011-09-15

分子中基团的运动方式、机制对分子体系性质、分子功能的表达等具有重要作用。微波波谱法在研究分子系统内部动力学、分子结构、构象变化、弱相互作用、基团大幅度运动以及探索量子溶剂等方面具有独特的能力,特别适合研究分子的精细结构、分子系统基团的内部转动运动,具有高灵敏度、高分辨率的特点。本文讨论了微波波谱法在研究分子系统基团大幅度运动动力学方面的应用,包括分子系统中甲基基团的内部转动、OH基团的运动、氨和氨基化合物的反演以及环状有机分子环运动等的动力学,同时结合作者使用微波波谱法研究的部分体系进行了分析。

Molecular group internal rotation and dynamics are of great significance in the expression of the activity and function of the molecules. Microwave spectroscopy which is capable of investigating the internal dynamics of molecular systems, the systematic structure of molecules, the conformation equilibria, weakly bound interactions, large amplitude motions, and quantum solvation mechanism, is a kind of technique with high sensitivity and resolution for studying group internal rotation dynamics and hyperfine structure of molecules. The large amplitude internal motions of molecular systems can be observed in their rotational spectra are reviewed in this paper. The typical motions are internal motion of methyl groups, internal motion of OH groups, inversion of amines and amides, organic ring motions and pseudorotation. Some our investigations are also discussed.

Contents
1 Introduction
2 Internal large amplitude motion of symmetric group
2.1 Internal large amplitude motion of single methyl group
2.2 Internal large amplitude motion of two and three methyl groups
2.3 Interplay of internal motion of methyl group with other motions
3 Internal motion of hydroxyl group
3.1 Internal large amplitude motion of hydroxyl group in organic ring
3.2 Internal motion of hydroxyl group in spherical top molecules
3.3 Internal motion of hydroxyl group in transient chiral molecules
4 Inversion of amines and other internal motions
5 Organic ring motions
5.1 Four- and five-membered ring puckering
5.2 Pseudorotation of organic ring
6 Conclusion and outlook

中图分类号: 

()

[1] 唐守渊(Tang S Y), 夏之宁(Xia Z N), 付钰洁(Fu Y J), 勾茜(Gou Q). 化学进展(Progress in Chemistry), 2009,21(5):1060-1069
[2] Dian B C, Brown G G, Douglass K O, Pate B H. Science, 2008, 320(5878): 924-928
[3] Schnell M, Grabow J U. Angew. Chem. Int. Ed., 2006, 45(21): 3465-3470
[4] Suma K, Sumiyoshi Y, Endo Y. Science, 2006, 311(5765): 1278-1281
[5] Baughcum S L, Smith Z, Wilson E B, Duerst R W. J. Am. Chem. Soc., 1984, 106(8): 2260-2264
[6] Suma K, Sumiyoshi Y, Endo Y. Science, 2005, 308(24): 1885-1886
[7] Melandri S, Evangelisti L, Maris A, Caminati W, Giuliano B M, Feyer V, Prince K C, Coreno M. J. Am. Chem. Soc., 2010, 132 (30):10269-10271
[8] Sanchez R, Giuliano B M, Melandri S, Favero L B, Caminati W. J. Am. Chem. Soc., 2007, 129(19): 6287-6290
[9] Maris A, Giuliano B M, Bonazzi D, Caminati W. J. Am. Chem. Soc., 2008, 130 (42): 13860-13861
[10] Tang S Y, Evangelisti L, Velino B, Caminati W. J. Chem. Phys., 2008, 129(14), 144301-144306
[11] Blanco S, Melandri S, Ottaviani P, Caminati W. J. Am. Chem. Soc., 2007, 129(9):2700-2703
[12] Tang J, Xu Y, Mckellar W A R, Jäger W. Science, 2002, 297(5589): 2030-2033
[13] Schwartz P R, Bevilacqua R M, Croskey C L, Olivero J J. Nature, 1983, 305(22): 294-295
[14] Cleeton C E, Williams N H. Phys. Rev., 1934, 45(2): 234-237
[15] Gordy W, Cook R L. Microwave molecular spectra. 2nd ed., New York: Wiley Interscience, 1984, 11-209
[16] Caminati W, Cazzoli G, Mirri A M. Chem. Phys. Letters, 1975, 31(1): 104-107
[17] Caminati W, Scappini F. J. Mol. Spectrosc., 1986, 117(2): 184-194
[18] Xu L H, Lees R M, Hougen J T. J. Chem. Phys., 1999, 110(8): 3835-3841
[19] Kleiner I, Hougen J T, Grabow J U, Belov S P, Tretyakov M, Cosléou J. J. Mol. Spectrosc., 1996, 179(1): 41-60
[20] Xu L H, Hougen J T. J. Mol. Spectrosc., 1995, 173(2): 540-551
[21] Hellweg A. Chem. Phys., 2008, 344(3):281-290
[22] Hellweg A, Hättig C. J. Chem. Phys., 2007, 127(2): 024307-024316
[23] Kawashima Y, Suenram R D, Hirota E. J. Mol. Spectrosc., 2003, 219(1):105-118
[24] Ohashi N, Hougen J T, Suenram R D, Lovas F J, Kawashima Y, Fujitake M, Pyka J. J. Mol. Spectrosc., 2004, 227(1): 28-42
[25] Fujitake M, Kubota Y, Ohashi N. J. Mol. Spectrosc., 2006, 236(1): 97-109
[26] Groner P, Herbst E, de Lucia F C, Drouin B J, Mäder H. J. Mol. Struct., 2006, 795(1/3): 173-178
[27] Schnell M, Grabow J U. Phys. Chem. Chem. Phys., 2006, 8: 2225-2231
[28] Schnell M, Grabow J U. Chem. Phys., 2008, 343(2/3): 121-128
[29] Caminati W, Grabow J U. J. Am. Chem. Soc., 2006, 128(3):854-857
[30] Evangelisti L, Tang S Y, Velino B, Giuliano B M, Melandri S, Caminati W. Chem. Phys. Letters, 2009, 473(4/6): 247-250
[31] Caminati W. J. Mol. Spectrosc., 1981, 90(2): 315-320
[32] Fantoni A C, Caminati W, Meyer R. Chem. Phys. Letters, 1987, 133(1): 27-33
[33] Caminati W, Meyer R. J. Mol. Spectrosc., 1981, 90(2): 303-314
[34] Mathier E, Bauder A, Günthard H H. J. Mol. Spetrosc., 1971, 37(1): 63-76
[35] Sanchez R, Giuliano B M, Melandri S, Caminati W. Chem. Phys. Letters, 2006, 425(1/3): 6-9
[36] Lesarri A, Shipman S T, Neill J L, Brown G G, Suenram R D, Kang L, Caminati W, Pate B H. J. Am. Chem. Soc., 2010, 132(38):13417-13424
[37] Tang S Y, Xia Z N, Maris A, Caminati W. Chem. Phys. Letters, 2010, 498(1/3): 52-55
[38] Evangelisti L, Favero L B, Caminati W. J. Mol. Struct., 2010, 978(1/3): 279-281
[39] Utzat K A, Bohn R K, Montgomery J A, Michels H H, Caminati W. J. Phys. Chem. A, 2010, 114(25): 6913-6916
[40] Oh J J, Drouin B J, Cohen E A. J. Mol. Spetrosc., 2005, 234(1): 10-24
[41] Cohen E A, Drouin B J, Valenzuela E A, Woods R C, Caminati W, Maris A, Melandri S. J. Mol. Spectrosc., 2010, 260(1): 77-83
[42] Tang S Y, Camianti W. Phys. Chem. Chem. Phys.,2011,13(20): 9137-9139
[43] Quack M. Angew. Chem. Int. Ed., 2005, 44(23): 3623-3626
[44] Snow M S, Howard B J, Evangelisti L, Caminati W. J. Phys. Chem. A, 2011, 115(1): 47-51
[45] Pearson J C, Sastry K V L N, Herbst E, De Lucia F C. J. Mol. Spetrosc., 1996, 175(2): 246-261
[46] Melandri S, Favero P G, Caminati W. Chem. Phys. Letters, 1994, 223(5/6): 541-545
[47] Hirota E, Kawashima Y. J. Mol. Spetrosc., 2001, 207(2): 243-253
[48] Wollrab J E, Laurie V W. J. Chem. Phys., 1968, 48(11):5058-5067
[49] Grabow J U, Andrews A M, Fraser G T, Irikura K K, Suenram R D, Lovas F J, Lafferty W J, Domenech J L. J. Chem. Phys., 1996, 105(17): 7249-7262
[50] Tang S Y, Evangelisti L, Caminati W. J. Mol. Spectrosc., 2009, 258(1/2): 71-74
[51] Chan S I, Zinn J, Fernandez J, Gwinn W D. J. Chem. Phys., 1960, 33(6): 1643-1655
[52] Harris D O, Harrington H W, Luntz A C, Gwinn W D. J. Chem. Phys., 1966, 44(9): 3467-3480
[53] Vogelsanger B, Caminati W, Bauder A. Chem. Phys. Letters, 1987, 141(3): 245-250
[54] Caminati W, Vogelsanger B, Meyer R, Grassi G, Bauder A. J. Mol. Spectrosc., 1988, 131(1): 172-184
[55] López J C, Alonso J L, Charro M E, Wlodarczak G, Demaison J. J. Mol. Spetrosc., 1992, 155(1): 143-157
[56] Hassan K H, Hollas J M. J. Mol. Spetrosc., 1991, 147(1):100-113
[57] Caminati W, Damiani D, Corbelli G, Favero L B. Mol. Physics, 1992, 75: 857-865
[58] Caminati W, Favero L B, Velino B, Zerbetto F. Mol. Physics, 1993, 78: 1561-1574
[59] Caminati W, Damiani D, Favero L B. Mol. Physics, 1993, 76: 699-708
[60] Caminati W, Melandri S, Corbelli G, Favero L B, Meyer R. Mol. Physics, 1993, 80: 1297-1315
[61] Ottaviani P, Caminati W. Chem. Phys. Letters, 2005, 405(1/3): 68-72
[62] Kilpatrick J E, Pitzer K S, Spitzer R. J. Am. Chem. Soc., 1947, 69(10):2483-2488
[63] Harris D O, Engerholm G, Tolman C, Luntz A, Keller R, Kim H, Gwinn W D. J. Chem. Phys., 1969, 50(6):2438-2446
[64] Dommen J, Brupbacher J, Grassi G, Bauder A. J. Am. Chem. Soc., 1990, 112(3): 953-957
[65] Meyer R, López J C, Alonso J L, Melandri S, Favero P G, Caminati W. J. Chem. Phys., 1999, 111(17): 7871-7880
[66] Melnik D G, Gopalakrishnan S, Miller T A, de Lucia F C. J. Chem. Phys., 2003, 118(8): 3589-3599
[67] Melnik D G, Miller T A, de Lucia F C. J. Mol. Spetrosc., 2003, 221(2): 227-238
[68] Melnik D G, Miller T A. Science, 2008, 320(5878): 881-882

[1] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[2] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[3] 王慧娟, 刘育. 磺化冠醚的分子键合与组装[J]. 化学进展, 2020, 32(11): 1651-1664.
[4] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[5] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[6] 闫吉军, 康传清*, 高连勋. 阴离子-萘四酸双酰亚胺相互作用及其应用[J]. 化学进展, 2018, 30(7): 902-912.
[7] 王雪, 陈中慧, 卿光焱*. 基于磷脂膜的界面相互作用研究[J]. 化学进展, 2018, 30(7): 888-901.
[8] 闫博, 周宏伟*, 解璞, 金洗郎, 马爱洁*, 陈卫星. 化学振荡反应调控的动态可逆智能体系[J]. 化学进展, 2017, 29(7): 740-749.
[9] 王晶, 姚楠*. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
[10] 徐国华, 李从刚, 刘买利. 类细胞环境下蛋白质结构与功能的NMR研究[J]. 化学进展, 2017, 29(1): 75-82.
[11] 王霄, 许吉英, 陈义. 生物分子相互作用动力学的表面等离子体共振研究方法[J]. 化学进展, 2015, 27(5): 550-558.
[12] 靳永勇, 郝盼盼, 任军, 李忠. 单原子催化——概念、方法与应用[J]. 化学进展, 2015, 27(12): 1689-1704.
[13] 钟大根, 刘宗华, 左琴华, 薛巍. 高分子纳米材料与血浆蛋白的相互作用[J]. 化学进展, 2014, 26(04): 638-646.
[14] 王周君, 傅强, 包信和. 新型催化剂载体碳化硅的研究现状[J]. 化学进展, 2014, 26(04): 502-511.
[15] 熊雨婷, 李闵闵, 熊鹏, 杨梦, 卿光焱, 孙涛垒. 水相中糖识别人工受体[J]. 化学进展, 2014, 26(01): 48-60.