English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2132-2139 前一篇   后一篇

• 综述与评论 •

离子液与蛋白质和核酸相互作用的研究

张涛1, 陈凡1, 盖青青1, 屈锋1*, 张玉奎2   

  1. 1. 北京理工大学生命学院 北京 100081;
    2. 中国科学院大连化学物理研究所 大连 116023
  • 收稿日期:2011-01-01 修回日期:2011-03-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:qufengqu@bit.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2007CB914101)和国家自然科学基金项目(No.20875009)资助

Ionic Liquids and Protein/Nucleic Acid Interaction

Zhang Tao1, Chen Fan1, Gai Qingqing1, Qu Feng1*, Zhang Yukui2   

  1. 1. School of Life Science, Beijing Institute of Technology, Beijing 100081, China;
    2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
  • Received:2011-01-01 Revised:2011-03-01 Online:2011-10-24 Published:2011-09-15

离子液因其具有良好的生物兼容性和独特的理化性质,近年来在生物催化和生物大分子蛋白质与核酸的分离分析领域得到广泛应用。离子液与生物大分子相互作用的研究是离子液相关理论与应用研究的基础,有关离子液与蛋白质和核酸相互作用的机理研究受到关注。本文简要介绍了常用离子液的分类,离子液与蛋白质分子作用的机理,离子液与核酸分子作用的机理,以及离子液在酶催化反应、生物分子分离、生物分子电化学分析和毛细管电泳分析中的应用,并主要综述了近年的相关研究和应用进展。

Room-temperature ionic liquids(ILs)have aroused considerable interest recent years. They have been widely applied in biological catalysis and proteins and nucleic acids separation due to their good compatibility and unique properties. The interaction of ionic liquids and biological macromolecules is the foundation of their theory and application study. In this paper, the types of common used ILs, the principle of interaction between ionic liquids and protein, and ionic liquids and nucleic acid are introduced respectively. Furthermore, the recent application of ILs in biological catalysis, biological molecules separation electrochemical analysis as well as capillary electrophoresis analysis is reviewed.

Contents
1 Introduction
2 Type of ILs
3 Interaction between ILs and protein
3.1 Electrostatic interaction
3.2 Hydrophobic interaction
3.3 Hydrogen bond interaction
3.4 Coordination interaction
4 Interaction between ILs and nucleic acid
4.1 Electrostatic interaction
4.2 Hydrophobic interaction
4.3 Hydrogen bond interaction
5 Application of ILs based on the interaction between protein and nucleic acid
5.1 Enzyme-catalyzed reaction
5.2 Extraction separation
5.3 Electrochemical analysis
5.4 Separation and analysis in CE
6 Outlook

中图分类号: 

()

[1] Han X X, Armstrong D W. Acc. Chem. Res., 2007, 40(11): 1079-1086
[2] Mwongela S M, Numan A, Gill N L, Agbaria R A, Warner I M. Anal. Chem., 2003, 75(22): 6089-6096
[3] Hu X L, Peng J F, Huang Y J, Yin D Q, Liu J F. J. Sep. Sci., 2009, 32(23/24): 4126-4132
[4] Tzeng Y P, Shen C W, Yu T. J. Chromatogr. A, 2008, 1193(1/2): 1-6
[5] Sharifi A, Barazandeh M, Abaee M S, Mirzaei M. Tetrahedron Lett., 2010, 51(14): 1852-1855
[6] Xu Y H, Li J, Wang E K. J. Chromatogr. A, 2008, 1207(1/2): 175-180
[7] Erbeldinger M, Mesiano A J, Russell A J. Biotechnol. Prog., 2000, 16(6): 1129-1131
[8] Gamba M, Alexandre, Lapis A M, Dupont J. Adv. Synth. Catal., 2008, 350(1): 160-164
[9] Sate D, Janssen M H A, Stephens G, Sheldon R A, Seddon K R, Lu J R. Green Chem., 2007, 9(8): 859-867
[10] Roosen C, Müller P, Greiner L. Appl. Microbiol. Biotechnol., 2008, 81(4): 607-614
[11] Dreyer S, Salim P, Kragl U. Biochem. Eng. J., 2009, 46(2): 176-185
[12] Pei Y C, Wang J J, Wu K, Xuan X P, Lu X J. Sep. Purif. Technol., 2009, 64(3): 288-295
[13] Shu Y, Chen X W, Wang J H. Talanta, 2010, 81(1/2): 637-642
[14] Qin W D, Fong S, Li Y. Analyst, 2003, 128(1): 37-41
[15] Xu Y H, Jiang H, Wang E K. Electrophoresis, 2007, 28(24): 4597-4605
[16] Jiang T F, Gu Y L, Liang B, Li J B, Shi Y P, Ou Q Y. Anal. Chim. Acta, 2003, 479(2): 249-254
[17] Chitta K R, van Meter D S, Stalcup A M. Anal. Bioanal. Chem., 2010, 396(2): 775-781
[18] Li D, Wang Z M, Wang L, Qu C L, Zhang H Q. Chromatographia, 2009, 70(5/6): 825-830
[19] Huang K, Han X X, Zhang X T, Armstrong D W. Anal. Bioanal. Chem., 2007, 389(7/8): 2265-2275
[20] Xu Y, Wang E. J. Chromatogr. A, 2009, 1216(24): 4817-4823
[21] Marszall M P, Kaliszan R. Anal. Chem., 2007, 37(2): 127-140
[22] Buszewski B, Studziska S. Chromatographia, 2008, 68(1/2): 1-10
[23] Berthod A, Ruiz-ángel M J, Carda-Broch S. J. Chromatogr. A, 2008, 1184(1/2): 6-18
[24] Corradini D, Nicoletti I, Bonn G K. Electrophoresis, 2009, 30(11): 1869-1876
[25] Xie Y N, Wang S F, Zhang Z L, Pang D W. J. Phys. Chem. B, 2008, 112(32): 9864-9868
[26] Zhang L Q, Li H R. Acta. Phys. Chim. Sin., 2010, 26(11): 2877-2889
[27] Sun N, Zhang S J, Zhang X P, Li Z X. Chinese J. Process. Eng., 2005, 5(6): 689-702
[28] 王仲妮(Wang Z N), 王洁莹(Wang J Y), 司友华(Si Y H), 周武(Zhou W). 化学进展(Prog. Chem.), 2008, 20(7/8): 1057-1063
[29] Anderson J L, Armstrong D W, Wei G T. Anal. Chem., 2006, 78(9): 2892-2902
[30] Li X X, Xu X D, Dan Y Y, Feng J, Ge L, Zhang M L. Cryst. Res. Technol., 2008, 43(10): 1062-1068
[31] Judge R A, Takahashi S, Longenecker K L, Elizabeth H F, Cele A Z, Chiu M L. Cryst. Growth. Des., 2009, 9(8): 3463-3469
[32] Dariusch H, Dirk H, Dirk W B. Chem. Eng. Technol., 2008, 31 (6): 911-916
[33] Chen X W, Ji Y P, Wang J H. Analyst, 2010, 135 (9): 2241-2248
[34] Diana C, Hermann W, Christian H. Angew. Chem. Int. Ed., 2007, 46(46): 8887 -8889
[35] Liu L Y, Chen H Z. Chinese Sci. Bulletin, 2006, 51(20): 2432-2436
[36] Byrneand N, Angell C A. J. Mol. Biol., 2008, 378(3): 707-714
[37] Cui G Y, Ni M X. Prog. Phar. Sci., 2010, 34(11): 499-506
[38] Ge L Y, Wang X T, Tana S N, Tsai H H, Yong J W H, Hua L. Talanta, 2010, 81(4/5): 1861-1864
[39] Du Z, Yu Y L, Wang J H. Chem. Eur. J., 2007, 13(7): 2130-2137
[40] 姜大雨(Jiang D Y), 朱红(Zhu H), 王良(Wang L), 马春宏(Ma C H), 闫永胜(Yan Y S), 王庆伟(Wang Q W). 化学试剂(China Reagens), 2010, 32(9): 805-810
[41] Han B, Zhang L H, Liang Z, Qu F, Deng Y L, Zhang Y K. Sci. Sin. Chim., 2010, 40(10): 1487-1495
[42] Wen Y L, Yang X D, Hu G H, Chen S H, Jia N Q. Electro-Chim. Acta, 2008, 54(2): 744-748
[43] Li Z Y, Pei Y C, Wang J J. J. Henan Normal University (Natural Science), 2010, 38(1): 100-104
[44] Chun S V, Dzyuba S, Bartsch R A. Anal. Chem., 2001, 73(15): 3737-3741
[45] Cheng D H, Chen X W, Shu Y, Wang J H. Talanta, 2008, 75(5): 1270-1278
[46] Page T A, Kraut N D, Page P M, Baker G A, Bright F V. J. Phys. Chem. B, 2009, 113(38): 12825-12830
[47] Micaelo N M, Soares C M. J. Phys. Chem. B, 2008, 112(9): 2566-2572
[48] Wang K, Wang J F. J. Mol. Cata., 2009, 23(1): 73-77
[49] Chen X W, Liu Y J, Su Y, Wang J H. Sci. Sin. Chim., 2010, 40(1): 63-69
[50] 程德红(Cheng D H), 陈旭伟(Chen X W), 舒杨(Shu Y), 王建华(Wang J H). 分析化学(Chinese J. Anal. Chem.), 2008, 36(9): 1187-1190
[51] 吴会灵(Wu H L), 杨芃原(Yang P Y), 张重杰(Zhang Z J), 何锡文(He X W). 分析化学(Chinese J. Anal. Chem.), 2004, 32(9): 1256-1261
[52] Vijayaraghavan R, Izgorodin A, Ganesh V, Surianarayanan M, MacFarlane D R. Angew. Chem. Int. Ed., 2010, 122(9): 1675-1677
[53] Lee C K, Shin S R, Lee S H, Jeon J H, So I, Kang T M, Kim S I, Mun J Y, Han S S, Spinks G M, Wallace G G, Kim S J. Angew. Chem. Int. Ed., 2008, 120(13): 2504-2508
[54] Nishimura N, Ohno H. J. Mater. Chem., 2002, 12(8): 2299-2304
[55] Wang J H, Cheng D H, Chen X W, Du Z, Fang Z L. Anal. Chem., 2007, 79(2), 620-625
[56] Cheng D H, Chen X W, Wang J H, Fang Z L. Chem. Eur. J., 2007, 13(17): 4833-4839
[57] Wang H Y, Wang J J, Zhang S B. Phys. Chem. Chem. Phys., 2011, 13: 3906-3910
[58] Ding Y H, Zhang L, Xie J, Guo R. J. Phys. Chem. B, 2010, 114(5): 2033-2043
[59] Uzagare M C, Sanghvi Y S, Salunkhe M M. Green Chem., 2003, 5(4): 370-372
[60] Sheldon R A, Lau R M, Sorgedrager M J, van Rantwijk F, Seddon K R. Green Chem., 2002, 4(2): 147-151
[61] Park S, Kazlauskas R J. Curr. Opin. Biotech., 2003, 14(4): 432-437
[62] Yang Z, Pan W B. Enzyme. Microb. Tech., 2005, 37(1): 19-28
[63] Moon Y H, Lee S M, Ha S H, Koo Y M. Korean J. Chem. Eng., 2006, 23(2): 247-263
[64] Zhao H. J. Chem. Technol. Biotechnol., 2010, 85(7): 891-907
[65] Moniruzzamana M, Nakashimab K, Kamiyaa N, Goto M. Biochem. Eng. J., 2010, 48(3): 295-314
[66] Chen X W, Liu J W, Wang J H. Anal. Methods, 2010, 2(9): 1222-1226
[67] Gutowski K E, Broker G A, Willauer H D, Huddleston J G, Swatloski R P, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2003, 125(22): 6632-6633
[68] Li Z Y, Pei Y C, Wang H Y, Fan J, Wang J J. Trends Anal. Chem., 2010, 29(11): 1336-1346
[69] Pei Y C, Li Z Y, Liu L, Wang J J, Wang H Y. Sci. China Chem., 2010, 53(7): 1554-1560
[70] Shiddiky M J A, Torriero A A J. Biosens. Bioelectron., 2010, 13: 1-13
[71] Shangguan X D, Zhang H F, Zheng J B. Electrochem. Commun., 2008, 10(8): 1140-1143
[72] Wang S F, Chen T, Zhang Z L, Pang D W. Electrochem. Commun., 2007, 9(6): 1337-1342
[73] Sun W, Xi M Y, Zhang L, Zhan T R, Gao H W, Jiao K. Electrochim. Acta, 2010, 56(1): 222-226
[74] Li T, Li B L, Dong S J, Wang E K. Chem. Eur. J., 2007, 13: 8516-8521
[75] Wu X P, Wei W P, Su Q M, Xu L J, Chen G N. Electrophoresis, 2008, 29(11): 2356-2362
[76] Li J, Han H F, Wang Q, Liu X, Jiang S X. Anal. Chim. Acta, 2010, 674(2): 243-248

[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[3] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[4] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[5] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[6] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[7] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[8] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[9] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[10] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
[11] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[12] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[13] 王慧娟, 刘育. 磺化冠醚的分子键合与组装[J]. 化学进展, 2020, 32(11): 1651-1664.
[14] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[15] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.