English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2113-2118 前一篇   后一篇

• 综述与评论 •

卟啉纳米组装与生物传感

屠闻文, 雷建平*, 鞠熀先*   

  1. 南京大学化学化工学院 生命分析化学国家重点实验室 南京 210093
  • 收稿日期:2011-03-01 修回日期:2011-04-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:hxju@nju.edu.cn; jpl@nju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20821063,20875044,21075060)资助

Nanoassembly and Biosensing of Porphyrins

Tu Wenwen, Lei Jianping*, Ju Huangxian*   

  1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received:2011-03-01 Revised:2011-04-01 Online:2011-10-24 Published:2011-09-15

卟啉是一类重要的有机共轭分子,可以模拟许多酶的活性中心。一系列卟啉仿生酶已被合成,并用于模拟生物蛋白酶的催化活性,包括平面卟啉、栅栏卟啉、扩展环卟啉和三元环卟啉。在生物体内,许多金属蛋白酶经常自组装成纳米尺度的超分子结构来实现其基本的生物催化作用。卟啉可以通过共价或者非共价作用有序组装在纳米材料上,实现其模拟金属蛋白酶的功能。金属卟啉是良好的电子媒介体,对生命过程相关小分子的氧化还原具有较好的电催化活性。因此,金属卟啉纳米组装形成的纳米材料复合物可用于新型电化学生物传感器的构建。基于卟啉纳米材料复合物的光物理和光化学性质构建的新型光电化学生物传感平台已用于生物分子的检测。本文主要从卟啉仿生酶的合成、有序纳米组装和卟啉纳米复合物的生物传感进行评述,为构建新型电化学和光电化学传感器提供有用信息。

Porphyrins are important classes of conjugated organic molecules,which could mimic the active site of many important enzymes. A series of porphyrin molecules,such as planar porphyrin,picket-fence porphyrin,macroporphyrin and triphyrin,have been synthesized to mimic the catalytic activity of biological protein. Many metalloprotein enzymes usually self-assemble in vivo to form nanosized supermolecular structure to realize their biocatalysis. The order nanoassembly of porphyrins on nanomaterials by covalent or noncovalent way can mimic metalloprotein enzymes and realize their functions. Metalloporphyrins have been well used as electron transfer mediators and exhibited good electrocatalytic activity toward the reduction or oxidation of many small molecules related to life process. Thus,the nanocomposites of metalloporphyrin-nanomaterials have been good candidates to construct novel electrochemical biosensors. Meanwhile,owing to the good photophysical and photochemical properties,the nanocomposites of metalloporphyrin-nanomaterials have also been employed to develop novel photoelectrochemical biosensing platforms for detection of biomolecules. In this review,the systhysis and nanoassembly of porphyrins,and biosensing application of the formed nanocomposite are highlighted to provide the reference information for the development of novel electrochemical and photoelectrochemical biosensors.

Contents
1 Introduction
2 Synthesis of porphyrins
3 Ordered nanoassembly of porphyrins
4 Biosensing of porphyrin nanocomposites
4.1 Electrochemical biosensors
4.2 Photochemical biosensors
4.3 Photoelectrochemical biosensors
5 Conclusions and outlook

中图分类号: 

()

[1] 王荣民(Wang R M),朱永峰(Zhu R F),何玉凤(He Y F),李岩(Li Y),毛崇武(Mao C W),何乃普(He N P). 化学进展(Progress in Chemistry), 2010, 22(10): 1952-1963
[2] 张建斌(Zhang J B), 张鹏燕(Zhang P Y), 陈国华(Chen G H), 韩芳(Han F), 魏雄辉(Wei X H). 化学进展(Progress in Chemistry), 2009, 21(4): 771-776
[3] 赵玮(Zhao W), 佟斌(Tong B), 支俊格(Zhi J G), 潘月秀(Pan Y X), 申进波(Shen J B), 董宇平(Dong Y P). 化学进展(Progress in Chemistry), 2009, 21(12): 2625-2634
[4] Collman J P, Yan Y L, Lei J P, Dinolfo P H. Inorg. Chem., 2006, 45: 7581-7583
[5] Collman J P, Yan Y L, Lei J P, Dinolfo P H. Org. Lett., 2006, 8: 923-926
[6] Collman J P, Boulatov R C, Sunderland J, Fu L. Chem. Rev., 2004, 104: 561-588
[7] Wasser I M, Huang H W, Monne-Loccoz P, Karlin K D. J. Am. Chem. Soc., 2005, 127: 3310-3320
[8] Liu J G, Naruta Y, Tani F. Angew. Chem. Int. Ed., 2005, 44: 1836-1840
[9] Balaban T S, Linke-Schaetzel M, Bhise A D, Vanthuyne N, Christian R, Anson C E, Buth G, Eichhöfer A, Foster K, Garab G, Gliemann H, Goddard R, Javorfi T, Powell A K, Rösner H, Schimmel T. Chem. Eur. J., 2005, 11: 2267-2275
[10] Chen J, Hamon M A, Hu H, Chen Y S, Rao A M, Eklund P C, Haddon R C. Science, 1998, 282: 95-98
[11] Imahori H, Fukuzumi S. Adv. Funct. Mater., 2004, 14: 525-536
[12] Guldi D M, Rahman G M A, Zerbetto F, Prato M. Acc. Chem. Res., 2005, 38: 871-878
[13] Sgobba V, Guldi D M. Chem. Soc. Rev., 2009, 38: 165-184
[14] Baskaran D, Mays J W, Zhang X P, Bratcher M S. J. Am. Chem. Soc., 2005, 127: 6916-6917
[15] Huang M H, Shen Y, Cheng W L, Shao Y, Sun X P, Liu B F, Dong S J. Anal. Chim. Acta, 2005, 535: 15-22
[16] Ferguson-Miller S, Babcock G T. Chem. Rev., 1996, 96: 2889-2908
[17] Lei J P, Ju H X, Ikeda O. Electrochim. Acta, 2004, 49: 2453-2460
[18] Lei J P, Ju H X, Ikeda O. J. Electroanal. Chem., 2004, 567: 331-338
[19] Wu D, Descalzo A B, Weik F, Emmerling F, Shen Z, You X Z, Rurack K. Angew. Chem. Int. Ed., 2008, 47: 193-197
[20] Xue Z L, Shen Z, Mack J, Kuzuhara D, Yamada H, Okujima T, Ono N, You X Z, Kobayashi N. J. Am. Chem. Soc., 2008, 130: 16478-16479
[21] Ohyama J, Hitomi Y, Higuchi Y, Shinagawa M, Mukai H, Kodera M, Teramura K, Shishido T, Tanaka T. Chem. Commun., 2008, 6300-6302
[22] Satake A, Fujita M, Kurimoto Y, Kobuke Y. Chem. Commun., 2009, 1231-1233
[23] Rochford J, Chu D, Hagfeldt A, Galoppini E. J. Am. Chem. Soc., 2007, 129: 4655-4665
[24] Kathiravan A, Kumar P S, Renganathan R. Anandan S. Colloid Surf. A-Physicochem. Eng. Asp., 2009, 333: 175-181
[25] Said A J, Poize G, Martini C, Ferry D, Marine W, Giorgio S, Fages F, Hocq J, Bouclé J, Nelson J, Durrant J R, Ackermann J. J. Phys. Chem. C, 2010, 114: 11273-11278
[26] Mozer A J, Wagner P, Officer D L, Wallace G G, Campbell W M, Miyashita M, Sunahara K, Mori S. Chem. Commun., 2008, 4741-4743
[27] Tanaka M, Hayashi S, Eu S, Umeyama T, Matano Y, Imahori H. Chem. Commun., 2007, 2069-2071
[28] Eu S, Hayashi S, Umeyama T, Oguro A, Kawasaki M, Kadota N, Matano Y, Imahori H. J. Phys. Chem. C, 2007, 111: 3528-3537
[29] Hayashi S, Tanaka M, Hayashi H, Eu S, Umeyama T, Matano Y, Araki Y, Imahori H. J. Phys. Chem. C, 2008, 112: 15576-15585
[30] Rochford J, Galoppini E. Langmuir, 2008, 24: 5366-5374
[31] Yu J H, Chen J R, Wang X S, Zhang B W, Cao Y. Chem. Commun., 2003, 1856-1857
[32] Kang S, Yasuda M, Miyasaka H, Hayashi H, Kawasaki M, Umeyama T, Matano Y, Yoshida K, Isoda S, Imahori H. ChemSusChem, 2008, 1: 254-261
[33] Murakami H, Nomura T, Nakashima N. Chem. Phys. Lett., 2003, 378: 481-485
[34] Guldi D M, Rahman G M A, Prato M, Jux N, Qin S H, Ford W. Angew. Chem. Int. Ed., 2005, 44: 2015-2018
[35] Liu Z B, Tian J G, Guo Z, Ren D M, Du F, Zheng J Y, Chen Y S. Adv. Mater., 2008, 20: 511-515
[36] Hasobe T, Fukuzumi S, Kamat P V. J. Am. Chem. Soc., 2005, 127: 11884-11885
[37] Xu Y F, Liu Z B, Zhang X L, Wang Y, Tian J G, Huang Y, Ma Y F, Zhang X Y, Chen Y S. Adv. Mater., 2009, 21: 1275-1279
[38] Xu Y X, Zhao L, Bai H, Hong W J, Li C, Shi G Q. J. Am. Chem. Soc., 2009, 131: 13490-13497
[39] Alvaro M, Atienzar P, Cruz P D L, Delgado J L, Troiani V, Garcia H, Langa F, Palkar A, Echegoyen L. J. Am. Chem. Soc., 2006, 128: 6626-6635
[40] Yu J X, Mathew S, Flavel B S, Johnston M R, Shapter J G. J. Am. Chem. Soc., 2008, 130: 8788-8796
[41] Chitta R, Sandanayaka A S D, Schumacher A L, D'Souza L, Araki Y, Ito O, D'Souza F. J. Phys. Chem. C, 2007, 111: 6947-6955
[42] Liu Y, Yan Y L, Lei J P, Wu F, Ju H X. Electrochem. Commun., 2007, 9: 2564-2570
[43] Tu W W, Lei J P, Ju H X. Electrochem. Commun., 2008, 10: 766-769
[44] Wu Y H. Food Chem., 2010, 121: 580-584
[45] Tu W W, Lei J P, Ju H X. Chem. Eur. J., 2009, 15: 779-784
[46] Tu W W, Lei J P, Jian G Q, Hu Z, Ju H X. Chem. Eur. J., 2010, 16: 4120-4126
[47] Walker R. Food Add. Contam., 1985, 2: 5-24
[48] Situmorang M, Hibbert D B, Gooding J J, Barnett D. Analyst, 1999, 124: 1775-1779
[49] Vally H, Carr A, El-Saleh J, Thompson P. J. Allergy Clin. Immunol., 1999, 103: 41-46
[50] Vally H, Thompson P. Thorax, 2001, 56: 763-769
[51] Tu W W, Lei J P, Zhang S Y, Ju H X. Chem. Eur. J., 2010, 16: 10771-10777
[52] Zhang S Y, Tang S, Lei J P, Dong H F, Ju H X. J. Electroanal. Chem., 2011, 656: 285-288
[53] Wu L N, Lei J P, Zhang X J. Biosens. Bioelectron., 2008, 24: 644-649
[54] Tu W W, Lei J P, Ding L, Ju H X. Chem. Commun., 2009, 4227-4229
[55] Guo Y J, Deng L, Li J, Guo S J, Wang E K, Dong S J. ACS Nano, 2011, 5: 1282-1290
[56] Cho Y, Lee S S, Jung J H. Analyst, 2010, 135: 1551-1555
[57] Frasco M F, Vamvakaki V, Chaniotakis N. J. Nanopart. Res., 2010, 12: 1449-1458
[58] Zhang X R, Zhao Y Q, Li S G, Zhang S S. Chem. Commun., 2010, 9173-9175
[59] Wang G L, Yu P P, Xu J J, Chen H Y. J. Phys. Chem. C, 2009, 113: 11142-11148
[60] An Y R, Tang L L, Jiang X L, Chen H, Yang M C, Jin L T, Zhang S P, Wang C G, Zhang W. Chem. Eur. J., 2010, 16: 14439-14446
[61] Yildiz H B, Freeman R, Gill R, Willner I. Anal. Chem., 2008, 80: 2811-2816
[62] Kang Q, Yang L X, Chen Y F, Luo S L, Wen L F, Cai Q Y, Yao S Z. Anal. Chem., 2010, 82: 9749-9754
[63] Golub E, Pelossof G, Freeman R, Zhang H, Willner I. Anal. Chem. 2009, 81: 9291-9298
[64] Chen D, Zhang H, Li X, Li J H. Anal. Chem., 2010, 82: 2253-2261
[65] Tu W W, Dong Y T, Lei J P, Ju H X. Anal. Chem., 2010, 82: 8711-8716

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[3] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[4] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[5] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[6] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[7] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[8] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[9] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[10] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[11] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[12] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[13] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[14] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[15] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
阅读次数
全文


摘要

卟啉纳米组装与生物传感