English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2038-2044 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池用富锂层状正极材料

吴承仁1,2, 赵长春1*, 王兆翔2*, 陈立泉2   

  1. 1. 中国地质大学(北京)材料科学与工程学院 北京 100083;
    2. 中国科学院物理研究所固态离子学实验室 北京 100190
  • 收稿日期:2010-12-01 修回日期:2011-02-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:zhaocc@cugb.edu.cn; zxwang@iphy.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.50772130)和国家重点基础研究发展计划(973)项目(No.2009CB220100)资助

Li-Rich Layer-Structured Cathode Materials for Li-Ion Batteries

Wu Chengren1,2, Zhao Changchun1*, Wang Zhaoxiang2*, Chen Liquan2   

  1. 1. School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China;
    2. Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2010-12-01 Revised:2011-02-01 Online:2011-10-24 Published:2011-09-15

正极材料与负极材料是锂离子电池重要组成部分。目前锂离子电池负极材料比容量通常在300mAh/g以上,而正极材料比容量始终徘徊在150mAh/g。正极材料正在成为锂离子电池性能进一步提升的瓶颈。富锂层状正极材料是一类新型正极材料,其可逆容量在200mAh/g以上,其高容量特性引起人们的广泛关注。这类材料可以用xLi2MO3·(1-x)LiM'O2 (M 为Mn, Ti, Zr之一或任意组合; M'为Mn, Ni, Co之一或任意组合; 0≤x≤1)形式表示。由于其组成与结构的特殊性,这类富锂层状正极材料的充放电机理也不同于其它含锂过渡金属氧化物正极材料。本文介绍富锂层状正极材料的合成、结构与充放电机理,重点介绍近年来通过改性提高其电化学性能方面的研究进展,指出目前富锂材料研究中存在的问题,探讨未来的研究重点。

Electrode materials are important building blocks of lithium ion batteries. The capacity of the anode material is usually more than 300 mAh/g while that of the cathode is still around 150 mAh/g. The capacity of the cathode materials has become a bottleneck to the improvement of the electrochemical performances of lithium ion battery. Li-rich layer-structured Li1+xA1-xO2 (A = Mn, Ni, Co, Ti, Zr, etc.) cathode materials caught the attention of the scientists in the past decade due to high reversible capacity (200 mAh/g or more). These materials can also be written as xLi2MO3·(1-x)LiM'O2 (M = Mn, Ti, Zr; M' = Mn, Ni, Co; 0≤x≤1). In this review, we introduce the synthesis methods, structure and the charge-discharge mechanism of this type of materials. More attention will be paid to the improvement to their electrochemical properties by surface (coating) and bulk (doping) modification. At the end of this review, the problems and prospects of the research on these cathode materials are commented.

Contents
1 Introduction
2 Structure of Li-rich layer-structured cathode materials
3 Synthesis of Li-rich layer-structured cathode materials
4 Charge-discharge mechanism
5 Surface and structural modification
5.1 Surface modification
5.2 Acidic treatment
5.3 Fluorine doping
5.4 Pre-cycling treatment
6 Prospects

中图分类号: 

()

[1] Li W, Currie J C. J. Electrochem. Soc., 1997, 68: 565-569
[2] Armstrong R A, Bruce P G. Nature, 1996, 381: 499-500
[3] Capitaine F, Gravereau P, Delmas C. Solid State Ionics, 1996, 89: 197-202
[4] Gummow R J, de Kock A, Thackeray M M. Solid State Ionics, 1994, 69: 59-67
[5] Ohzuku T, Kitagawa M, Hirai T. J. Electrochem. Soc., 1990, 137: 40-46
[6] Tarascon J M, Wang E, Shokoohi F K, McKinnon W R, Colson S. J. Electrochem. Soc., 1991, 138: 2859-2864
[7] Pahdi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144: 1188-1194
[8] Strobel P, Lambert-Andron B. J. Solid State Chem., 1988, 75: 90-98
[9] Rossouw M H, Liles D C, Thackeray M M. J. Solid State Chem., 1993, 104: 464-466
[10] Johnson C S, Korte S D, Vaughey J T, Thackeray M M, Bofinger T E, Shao-Horn Y, Hackney S A. J. Power Sources, 1999, 81: 491-495
[11] Johnson C S, Thackeray M M. Proc. Electrochem. Soc., 2000, 36: 47-60
[12] Rossouw M H, Thackeray M M. US 5166012, 1992
[13] Thackeray M M, Rossouw M H, de Kock A, de la Harpe A P, Gummow R J, Pearce K, Liles D C. J. Power Sources, 1993, 43: 289-300
[14] Johnson C S, Dees D W, Mansuetto M F, Thackeray M M, Vissers D R, Argyriou D, Loong C K, Christensen L. J. Power Sources, 1997, 68: 570-577
[15] Kim J S, Johnson C S, Thackeray M M. Electrochem. Commun., 2002, 4: 205-209
[16] Yoon W S, Iannopollo S, Grey C P, Carlier D, Gorman J, Reed J, Ceder G. Electrochem. Solid-State Lett., 2004, 7: A167-A171
[17] Lu Z H, Chen Z H, Dahn J R. Chem. Mater., 2003, 15: 3214-3220
[18] Pan C J, Lee Y J, Ammundsen B, Grey C P. Chem. Mater., 2002, 14: 2289-2299
[19] Lei C H, Bareño J, Wen J G, Petrov I, Kang S H, Abraham D P. J. Power Sources, 2008, 178: 422-433
[20] Breger J, Meng Y S, Hinuma Y, Kumar S, Kang K, Shao-Horn Y, Ceder G, Grey C P. Chem. Mater., 2006, 18: 4768-4781
[21] Thackeray M M, Kang S H, Johnson C S, Vaughey J T, Benedek R, Hackney S A. J. Mater. Chem., 2007, 17: 3112-3125
[22] Kang S H, Kempgens P, Greenbaum S, Kropf A J, Amine K, Thackeray M M. J. Mater. Chem., 2007, 17: 2069-2077
[23] Kim J S, Johnson C S, Vaughey J T, Thackeray M M. Chem. Mater., 2004, 16: 1996-2006
[24] Armstrong A R, Holzapfel M, Novak P, Johnson C S, Kang S H, Thackeray M M, Bruce P G. J. Am. Chem. Soc., 2006, 128: 8694-8698
[25] Johnson C S, Li N C, Lefief C, Vaughey J T, Thackeray M M. Chem. Mater., 2008, 20: 6095-6106
[26] Meng Y S, Ceder G, Grey C P, Yoon W S, Jian M, Bréger J, Shao-Horn Y. Chem. Mater., 2005, 17: 2386-2394
[27] 黄可龙(Huang K L), 王兆翔(Wang Z X), 刘素琴(Liu S Q). 锂离子电池原理与关键技术(The Principle and Key Technology of Lithium Ion Batteries). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2008. 113
[28] Lu Z H, Dahn J R. J. Electrochem. Soc., 2002, 149: A1454-A1459
[29] Wu H M, Tu J P, Chen X T, Li Y, Zhao X B, Cao G S. J. Electroanal. Chem., 2006, 586: 180-183
[30] Zhang L Q, Muta T, Noguchi H, Wang X Q, Zhou M. J, Yoshio M, Power Sources, 2003, 117: 137-142
[31] Wu Y, Manthiram A. Solid State Ionics, 2009, 180: 50-56
[32] Wu Y, Murugan A V, Manthiram A. J. Electrochem. Soc., 2008, 155: A635-A641
[33] Wu Y, Manthiram A. Electrochem. Solid-State Lett., 2006, 9: A221-A224
[34] Liu J, Wang Q Y, Reeja-Jayan B, Manthiram A. Electrochem. Commun., 2010, 12: 750-753
[35] Liu J, Reeja-Jayan B, Manthiram A. J. Phys. Chem., 2010, 114: 9528-9533
[36] Liu J, Manthiram A. J. Mater. Chem., 2010, 20: 3961-3967
[37] Zheng J M, Li J, Zhang Z R, Guo X J, Yang Y. Solid State Ionics, 2008, 179: 1794-1799
[38] Zheng J M, Zhang Z R, Wu X B, Dong Z X, Zhu Z, Yang Y. J. Electrochem. Soc., 2008, 155: A775-A782
[39] 冯国星(Feng G X). 中国科学院研究生院博士学位论文(Doctoral Dissertation of Graduate School of Chinese Academy of Sciences), 2010
[40] Wang Q Y, Liu J, Murugan A V, Manthiram A. J. Mater. Chem., 2009, 19: 4965-4972
[41] Morita M, Fujisaki T, Yoshimoto N, Ishikawa M. Electrochim. Acta, 2001, 46: 1565-1569
[42] Ulihin A S, Slobodyuk A B, Uvarov N F, Kharlamova O A, Isupov V P, Kavun V Y. Solid State Ionics, 2008, 179: 1740-1744
[43] Armand M, Dalard F, Deroo D, Mouliom C. Solid State Ionics, 1985, 15: 205-210
[44] Ohzuku T, Sawai K, Hirai T. J. Electrochem. Soc., 1990, 137: 3004-3010
[45] Appapillai A T, Mansour A N, Cho J, Shao-Horn Y. Chem. Mater., 2007, 19: 5748-5757
[46] Kim J S, Johnson C S, Vaughey J T, Thackeray M M. J. Power Sources, 2006, 153: 258-264
[47] Kang S H, Johnson C S, Vaughey J T, Amine K, Thackeray M M. J. Electrochem. Soc., 2006, 153: A1186-A1192
[48] Paik Y, Grey C P, Johnson C S, Kim J S, Thackeray M M. Chem. Mater., 2002, 14: 5109-5115
[49] Tang W P, Kanoh H F, Yang X J, Ooi K. Chem. Mater., 2000, 12: 3271-3279
[50] Benedek R, Thackeray M M, Electrochem. Solid-State Lett., 2006, 9: A265-A267
[51] Kubo K, Arai S, Yamada S, Kanda M. J. Power Sources, 1999, 81: 599-603
[52] Naghash A R, Lee J Y, Electrochim. Acta, 2001, 46: 2293-2304
[53] Kang S H, Thackeray M M. J. Electrochem. Soc., 2008, 155: A269-A275
[54] Kang S H, Amine K. J. Power Sources, 2005, 146: 654-657
[55] Kubo K, Fujiwara M, Yamada S, Arai S, Kanda M. J. Power Sources, 1997, 68: 553-557
[56] Kumagai N, Kim J M, Tsuruta S, Kadoma Y, Ui K. Electrochimica Acta, 2008, 53: 5287-5293
[57] Ito A, Li D, Ohsawa Y, Sato Y. J. Power Sources, 2008, 183: 344-346
[58] Ito A, Li D, Sato Y, Arao M, Watanabe M, Hatano M, Horie H, Ohsawa Y. J. Power Sources, 2010, 195: 567-573

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[5] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[6] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[7] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[8] 周晋, 陈鹏鹏. 二维纳米材料的改性及其环境污染物治理方面的应用[J]. 化学进展, 2022, 34(6): 1414-1430.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[11] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[12] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[13] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[14] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[15] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
阅读次数
全文


摘要

锂离子电池用富锂层状正极材料