English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2031-2037 前一篇   后一篇

• 综述与评论 •

离子液体吸收分离SO2

侯玉翠1, 任树行2, 吴卫泽2*   

  1. 1. 太原师范学院化学系 太原 030031;
    2. 北京化工大学 化工资源有效利用国家重点实验室 北京 100029
  • 收稿日期:2011-01-01 修回日期:2011-05-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:wzwu@mail.buct.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20746001)和教育部新世纪优秀人才支持计划项目(No. NCET-08-0710)资助

Absorption and Separation of SO2 by Ionic Liquids

Hou Yucui1, Ren Shuhang2, Wu Weize2*   

  1. 1. Department of Chemistry, Taiyuan Normal University, Taiyuan 030031, China;
    2. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2011-01-01 Revised:2011-05-01 Online:2011-10-24 Published:2011-09-15

离子液体具有极低的挥发性、良好的热稳定性和化学稳定性以及结构性质可调等特点,被认为是一种环境友好的溶剂。由于其结构性质可调,可以设计合成出对SO2有较高溶解能力和选择性的离子液体,在SO2的吸收和分离领域得到了研究者的青睐。本文综述了各种用于分离捕集烟气和混合气体中SO2的离子液体,介绍了它们的结构特点、吸收特性和强化方法,探讨了离子液体脱硫的相关机理,最后对离子液体吸收分离SO2中存在的问题、发展方向和应用前景进行了论述。

Room-temperature ionic liquids (ILs), which have excellent properties, such as extremely low vapor pressure, high thermal and chemical stability and tunable structures, are regarded as environmentally benign solvents. Due to their tunable structures and properties, ILs can be designed to endow with a high solvent power for SO2 absorption and separation, and they have been widely investigated in SO2 absorption and separation by many researchers. The paper briefly introduces the characters of ILs used for SO2 capture and separation from flue gas or mixed gas, the capacity of SO2 absorption in these ILs, the ways to enhance the absorption of SO2, and the mechanism of the absorption. Furthermore, the application prospect of the absorption by ILs is presented, and the existing problems and the further studies are discussed.

Contents
1 Introduction
2 Ionic liquids for absorption and separation of SO2 and their improvements
2.1 Guanidinium based ionic liquids
2.2 Hydroxyl ammonium based ionic liquids
2.3 Imidazolium and pyridinium based ionic iiquids
2.4 Quaternary ammonium based ionic liquids
2.5 Supported ionic liquids
2.6 Polymerized ionic liquids
3 Mechanism of SO2 absorption by ionic liquids
4 Effects of the components of flue gas on desulphurization by ionic liquids
5 Conclusions and outlook

中图分类号: 

()

[1] 谭鑫(Tan X), 钟儒刚(Zhong R G), 甄岩(Zhen Y), 佘远斌(She Y L), 张凡(Zhang F). 化工环保(Environmental Protection of Chemical Industry), 2003, 23: 322-328
[2] Ma X, Kaneko T, Tashimo T, Yoshida T, Kato K. Chemical Engineering Science, 2000, 55: 4643-4652
[3] 李汝雄(Li R X), 王建基(Wang J J). 化工进展(Chemical Industry and Engineering Progress), 2002, 21: 43-48
[4] Wilkes J S, Zaworotko M J. J. Chem. Soc. Chem. Commun., 1992, 965-967
[5] Zhao H, Xia S Q, Ma P S. J. Chem. Technol. Biotechnol., 2005, 80: 1089-1096
[6] Guo S, Du Z Y, Zhang S G, Li D M, Li Z P, Deng Y Q. Green Chem., 2006, 8: 296-300
[7] Anthony J L, Maginn E J, Brennecke J F. Journal of Physical Chemistry B, 2002, 106: 7315-7320
[8] Blanchard L A, Gu Z Y, Brennecke J F. J. Phys. Chem. B, 2001, 105: 2437-2444
[9] Bates E D, Mayton R D, Ntai L, Davis J H Jr. J. Am. Chem. Soc., 2002, 124: 926-927
[10] Yu G R, Zhang S J, Yao X Q, Zhang J M, Dong K, Dai W B, Mori R. Ind. Eng. Chem. Res., 2006, 45: 2875-2880
[11] Anthony J L, Anderson J L, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2005, 109: 6366-6374
[12] Shiflett M B, Yokozeki A. Ind. Eng. Chem. Res., 2005, 44: 4453-4464
[13] Wu W Z, Han B X, Gao H X, Liu Z M, Jiang T, Huang J. Angew. Chem. Int. Ed., 2004, 43: 2415-2417
[14] Anderson J L, Dixon J K, Maginn E J, Brennecke J F. J. Phys. Chem. B, 2006, 110: 15059-15062
[15] Huang J, Riisager A, Wasserscheid P, Fehrmann R. Chem. Commun., 2006, 4027-4029
[16] Huang J, Riisager A, Berg R W, Fehrmann R J. Mol. Catal. A: Chem., 2008, 279: 170-176
[17] Wang Y, Pan H H, Li H R, Wang C M. J. Phys. Chem. B, 2007, 111: 10461-10467
[18] Wang Y, Wang C M, Zhang L Q, Li H R. Phys. Chem. Chem. Phys., 2008, 10: 5976-5982
[19] Prasad B R, Senapati S. J. Phys. Chem. B, 2009, 113: 4739-4743
[20] Yuan X L, Zhang S J, Lu X M. J. Chem. Eng. Data, 2007, 52: 596-599
[21] Gao H X, Han B X, Li J C, Jiang T, Liu Z M, Wu W Z, Chang Y H, Zhang J M. Syn. Commun., 2004, 34: 3083-3089
[22] Lee K Y, Gong G T, Song K H, Kim H, Jung K, Kim C S. Inter. J. Hydrogen Energy, 2008, 33: 6031-6036
[23] Yokozeki A, Shiflett M B. Energy Fuels, 2009, 23: 4701-4708
[24] Shiflett M B, Yokozeki A. Energy Fuels, 2010, 24: 1001-1008
[25] Guo B, Duan E H, Ren A L, Wang Y, Liu H Y. J. Chem. Eng. Data, 2010, 55: 1398-1401
[26] Zhang Z M, Wu L B, Dong J, Li B G., Zhu S P. Ind. Eng. Chem. Res., 2009, 48: 2142-2148
[27] Jiang Y Y, Wu Y T, Wang W T, Li L, Zhou Z, Zhang Z B. Chinese J. Chem. Eng., 2009, 17: 594-601
[28] Luis P, Neves L A, Afonso C A M, Coelhoso I M, Crespo J G, Garea A, Irabien A. Desalination, 2009, 245(1/3): 485-493
[29] Wu L B, An D, Dong J, Zhang Z M, Li B G, Zhu S P. Macromol. Rapid Commun., 2006, 27: 1949-1954
[30] An D, Wu L B, Li B G, Zhu S P. Macromolecules, 2007, 40: 3388-3393
[31] 邢旭伟(Xing X W), 姚淑娟(Yao S J), 周成冈(Zhou C G), 古桂芬(Gu G F), 吴金平(Wu J P). 武汉大学学报(理学版)(J. Wuhan Univ. (Nat. Sci. Ed. )), 2008, 54: 162-166
[32] Shiflett M B, Yokozeki A. Ind. Eng. Chem. Res., 2010, 49: 1370-1377
[33] Ren S H, Hou Y C, Wu W Z, Liu Q Y, Xiao Y F, Chen X T. J. Phys. Chem. B, 2010, 114: 2175-2179
[34] Ren S H, Hou Y C, Wu W Z, Chen X T, Fan J L, Zhang J W. Ind. Eng. Chem. Res., 2009, 48: 4928-4932

[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[5] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[6] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[7] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[8] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[11] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[12] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[13] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[14] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[15] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
阅读次数
全文


摘要

离子液体吸收分离SO2