English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2021-2030 前一篇   后一篇

• 综述与评论 •

分子筛膜包覆型催化剂的制备和应用

金炜阳, 程党国, 陈丰秋*, 詹晓力   

  1. 浙江大学化学工程与生物工程学系 杭州 310027
  • 收稿日期:2010-12-01 修回日期:2011-04-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:fqchen@zju.edu.cn
  • 基金资助:

    化学工程联合国家重点实验室开放课题(No.SKL-ChE-09D02)资助

Synthesis and Application of Zeolite Membrane Encapsulated Catalysts

Jin Weiyang, Cheng Dangguo, Chen Fengqiu*, Zhan Xiaoli   

  1. Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, China
  • Received:2010-12-01 Revised:2011-04-01 Online:2011-10-24 Published:2011-09-15

均匀、连续、致密分子筛膜的合成和应用受到广泛关注。利用分子筛膜具有的筛分和催化作用,在传统颗粒催化剂或载体表面包覆分子筛膜形成复合型催化剂,可以实现膜基分离和催化过程的耦合,增加反应物选择性,提高目标产物收率。本文综述了近年来在不同类型颗粒催化剂或载体表面合成分子筛膜的制备方法,描述了分子筛膜包覆型复合催化剂用于不同催化反应体系的研究结果。同时,在归纳和总结已有研究成果基础上展望了分子筛膜包覆型催化剂的研究发展趋势。

Increasing attention has been drawn on the synthesis and application of homogeneous, continuous and dense zeolite membranes. By the use of separation and catalysis performance of zeolite membrane, the traditional particle catalyst coated with a zeolite film can act as a zeolite membrane reactor and enhance catalytic effects obviously. In this paper, preparation methods and applications of zeolite encapsulated catalysts were reviewed. The recent progresses on the study of zeolite-coated catalysts based on different supports were also introduced. And the technical trends in zeolite encapsulated catalysts were prospected.

Contents
1 Introduction
2 Preparation methods of encapsulated catalysts
2.1 Direct hydrothermal synthesis
2.2 Secondary growth on seeded supports
2.3 Dry gel conversion
2.4 Dip-coating
3 Preparation and applications of encapsulated catalysts on different supports
3.1 Silica
3.2 Alumina
3.3 Cordierite honeycomb monoliths
3.4 Activated carbon
4 Conclusion and prospects

中图分类号: 

()

[1] Burggraaf A, Cot L. Fundamentals of Inorganic Membrane Science and Technology. Amsterdam: Elsevier, 1996. 1-19
[2] Suzuki H. US4699892, 1987
[3] McLeary E E, Jansen J C, Kapteijn F. Micropor. Mesopor. Mater., 2006, 90: 198-220
[4] Caro J, Noack M. Micropor. Mesopor. Mater., 2008, 115: 215-233
[5] Bernardo P, Drioli E, Golemme G. Ind. Eng. Chem. Res., 2009, 48: 4638-4663
[6] Walcarius A. Anal. Chim. Acta, 1999, 384: 1-16
[7] Li Z J, Johnson M C, Sun M W, Ryan E T, Earl D J, Maichen W, Martin J I, Li S, Lew C M, Wang J, Deem M W, Davis M E, Yan Y S. Angew. Chem. Int. Ed., 2006, 45: 6329-6332
[8] Mitra A, Wang Z B, Cao T G, Wang H T, Huang L M, Yan Y S. J. Electrochem. Soc., 2002, 149: B472-B478
[9] Fong Y Y, Abdullah A Z, Ahmad A L, Bhatia S. Chem. Eng. J., 2008, 139: 172-193
[10] Caro J, Noack M, Kolsch P, Schafer R. Micropor. Mesopor. Mater., 2000, 38: 3-24
[11] Jansen J C, Koegler J H, van Bekkum H, Calis H P A, van den Bleek C M, Kapteijn F, Moulijn J A, Geus E R, van der Puil N. Micropor. Mesopor. Mater., 1998, 21: 213-226
[12] Mizukami F. Stud. Surf. Sci. Catal., 1999, 125: 1-12
[13] denExter M J, Jansen J C, vandeGraaf J M, Kapteijn F, Moulijn J A, vanBekkum H. Recent Advances and New Horizons in Zeolite Science and Technology. Studies in Surface Science and Catalysis, 1996, 102: 413-454
[14] Coronas J, Santamaria J. Top. Catal., 2004, 29: 29-44
[15] Marcano J G S, Tsotsis T T. Catalytic Membranes and Membrane Reactors. Weinheim: Wiley-VCH, 2002. 188-191
[16] Liu Q L, Wang T H, Guo H C, Liang C H, Liu S L, Zhang Z G, Cao Y M, Su D S, Qiu J S. Micropor. Mesopor. Mater., 2009, 120: 460-466
[17] Domínguez-Domínguez S, Berenguer-Murcia , Morallón E, Linares-Solano Á, Cazorla-Amorós D. Micropor. Mesopor. Mater., 2008, 115: 51-60
[18] Yildirim M H, Curos A R, Motuzas J, Julbe A, Stamatialis D F, Wessling M. J. Membr. Sci., 2009, 338: 75-83
[19] Kumar P, Ida J, Kim S, Guliants V V, Lin J Y S. J. Membr. Sci., 2006, 279: 539-547
[20] Urtiaga A, Gorri E, Casado C, Ortiz I. Sep. Purif. Technol., 2003, 32: 207-213
[21] Wang Z B, Ge Q Q, Shao J, Yan Y S. J. Am. Chem. Soc., 2009, 131: 6910-6911
[22] 成岳(Cheng Y), 李健生(Li J S), 王连军(Wang L J), 孙秀云(Sun X Y). 化学进展(Progress in Chemistry), 2006, 18(2/3): 221-229
[23] 王聪(Wang C), 刘秀芬(Liu X F), 崔瑞利(Cui R L), 张宝泉(Zhang B Q). 化学进展(Progress in Chemistry), 2008, 20(12): 1860-1867
[24] Li X G, Zhang Y, Meng M, Yang G H, San X G, Takahashi M, Tsubaki N. J. Membr. Sci., 2010, 347: 220-227
[25] Mosca A, Hedlund J, Webley P A, Grahn M, Rezaei F. Micropor. Mesopor. Mater., 2010, 130: 38-48
[26] Yan Y S, Davis M E, Gavalas G R. J. Membr. Sci., 1997, 123: 95-103
[27] Mintova S, Hedlund J, Valtchev V, Schoeman B J, Sterte J. J. Mater. Chem., 1998, 8: 2217-2221
[28] Pan M, Lin Y S. Micropor. Mesopor. Mater., 2001, 43: 319-327
[29] Collier P, Golunski S, Malde C, Breen J, Burch R. J. Am. Chem. Soc., 2003, 125: 12414-12415
[30] Devi R N, Meunier F C, Le Goaziou T, Hardacre C, Collier P J, Golunski S E, Gladden L F, Mantle M D. J. Phys. Chem. C, 2008, 112: 10968-10975
[31] Dong A G, Wang Y J, Wang D J, Yang W L, Zhang Y H, Ren N, Gao Z, Tang Y. Micropor. Mesopor. Mater., 2003, 64: 69-81
[32] Berenguer-Murcia Á, Morallón E, Cazorla-Amorós D, Linares-Solano Á. Micropor. Mesopor. Mater., 2005, 78: 159-167
[33] Matsukata M, Ogura M, Osaki T, Rao P R H P, Nomura M, Kikuchi E. Top. Catal., 1999, 9: 77-92
[34] Wee L H, Tosheva L, Itani L, Valtchev V, Doyle A M. J. Mater. Chem., 2008, 18: 3563-3567
[35] Chang C Y, Tsai W T, Lee H C. Sep. Sci. Technol., 1996, 31: 1675-1686
[36] Alfaro S, Arruebo M, Coronas J, Menendez M, Santamaria J. Micropor. Mesopor. Mater., 2001, 50: 195-200
[37] Matsufuji T, Nishiyama N, Ueyama K, Matsukata M. Catal. Today, 2000, 56: 265-273
[38] Okada K, Kameshima Y, Madhusoodana C D, Das R N. Sci. Technol. Adv. Mater., 2004, 5: 479-484
[39] Mitra B, Kunzru D. J. Am. Ceram. Soc., 2008, 91: 64-70
[40] Li Y S, Yang W S. J. Membr. Sci., 2008, 316: 3-17
[41] Wang L, Xu Y P, Wei Y, Duan J C, Chen A B, Wang B C, Ma H J, Tian Z J, Lin L W. J. Am. Chem. Soc., 2006, 128: 7432-7433
[42] Parida S K, Dash S, Patel S, Mishra B K. Adv. Colloid Interface Sci., 2006, 121: 77-110
[43] Melero J A, Van Grieken R, Morales G. Chem. Rev., 2006, 106: 3790-3812
[44] Fryxell G E. Inorg. Chem. Commun., 2006, 9: 1141-1150
[45] He J J, Yoneyama Y, Xu B L, Nishiyama N, Tsubaki N. Langmuir, 2005, 21: 1699-1702
[46] Yang G H, He J J, Zhang Y, Yoneyama Y, Tan Y S, Han Y Z, Vitidsant T, Tsubaki N. Energy & Fuels, 2008, 22: 1463-1468
[47] Ren N, Yang Y H, Zhang Y H, Wang Q R, Tang Y. J. Catal., 2007, 246: 215-222
[48] Ren N, Yang Y H, Shen J, Zhang Y H, Xu H L, Gao Z, Tang Y. J. Catal., 2007, 251: 182-188
[49] 史泰尔斯A. B. (Stiles A B). 催化剂载体与负载型催化剂(Catalyst Supports and Supported Catalysts Theoretical and Applocation Concepts). 北京: 中国石化出版社(Beijing: China Petrochemical Press), 1992. 11-12
[50] Zhong Y J, Chen L, Luo M F, Xie Y L, Zhu W D. Chem. Commun., 2006, 2911-2912
[51] Bao J, He J, Zhang Y, Yoneyama Y, Tsubaki N. Angew. Chem. Int. Ed., 2008, 47: 353-356
[52] Li X G, He J J, Meng M, Yoneyama Y, Tsubaki N. J. Catal., 2009, 265: 26-34
[53] Zhou J L, Zhang X F, Zhang J, Liu H O, Zhou L, Yeung K L. Catal. Commun., 2009, 10: 1804-1807
[54] Yang G H, Tsubaki N, Shamoto J, Yoneyama Y, Zhang Y. J. Am. Chem. Soc., 2010, 132: 8129-8136
[55] Boger T, Heibel A K, Sorensen C M. Ind. Eng. Chem. Res., 2004, 43: 4602-4611
[56] Tomasic V, Jovic F. Appl. Catal. A, 2006, 311: 112-121
[57] Kong D J, Zou W, Tong W Y, Fang D Y. Acta Chim. Sinica, 2009, 67: 1765-1770
[58] Beers A E W, Nijhuis T A, Aalders N, Kapteijn F, Moulijn J A. Appl. Catal. A, 2003, 243: 237-250
[59] Ohrman O, Hedlund J, Sterte J. Appl. Catal. A, 2004, 270: 193-199
[60] Mirth G, Cejka J, Lercher J. J. Catal., 1993, 139: 24-33
[61] Zhang Y X, Sul Q Y, Wang Z P, Yang Y H, Xin Y, Han D, Yang X, Wang H B, Gao X Y, Zhang Z L. Chem. Eng. Technol., 2008, 31: 1856-1862
[62] Paweewan B, Barrie P, Gladden L. Appl. Catal. A, 1999, 185: 259-268
[63] Borges P, Pinto R R, Lemos M, Lemos F, Védrine J, Derouane E, Ribeiro F. J. Mol. Catal. A: Chem., 2005, 229: 127-135
[64] vander Vaart R, Bosch H, Keizer K, Reith T. Micropor. Mesopor. Mater., 1997, 9: 203-207
[65] García-Martínez J, Cazorla-Amorós D, Linares-Solano Á, Lin Y S. Micropor. Mesopor. Mater., 2001, 42: 255-268
[66] Marsh H, Rodríguez-Reinoso F. Activated Carbon. Oxford: Elsevier, 2006. 430-446
[67] Morenocastilla C, Ferrogarcia M A, Joly J P, Bautistatoledo I, Carrascomarin F, Riverautrilla J. Langmuir, 1995, 11: 4386-4392
[68] Chen F Q, Hou C Y, Cheng D G, Zhan X L. CN101890333A, 2010
[69] Berenguer-Murcia Á, García-Martínez J, Cazorla-Amorós D, Linares-Solano Á, Fuertes A B. Micropor. Mesopor. Mater., 2003, 59: 147-159
[70] 邹本雪(Zou B X), 张雄福(Zhang X F), 王同华(Wang T H), 王金渠(Wang J Q), 刘海鸥(Liu H O), 王安杰(Wang A J). 无机材料学报(J. Inorg. Mater.), 2006, 21(1): 204-210
[71] Kiss G, Mozeleski E J, Nadler K C, VanDriessche E, DeRoover C. J. Mol. Catal. A: Chem., 1999, 138: 155-176

[1] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[2] 陈晓峰, 王开元, 梁芳铭, 姜睿祺, 孙进. 外泌体递药系统及其在肿瘤治疗中的应用[J]. 化学进展, 2022, 34(4): 773-786.
[3] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[4] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[5] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[6] 宋路杰, 吴友平, 邓建平. 手性药物的对映体选择性释放[J]. 化学进展, 2021, 33(9): 1550-1559.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[9] 杨强强, 李川, 于淑娴, 范书华, 王月霞, 洪敏. 纳米载体在共负载siRNA及化疗药物对逆转肿瘤多药耐药性方面的应用[J]. 化学进展, 2021, 33(10): 1900-1916.
[10] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[11] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[12] 王贺礼, 朱美华, 梁丽, 吴婷, 张飞, 陈祥树. SSZ-13分子筛膜的制备方法及其气体分离[J]. 化学进展, 2020, 32(4): 423-433.
[13] 张芬铭, 田语舒, 郑绩, 陈堃, 冯岸超, 张立群. 基于PHPMA的生物医用功能高分子[J]. 化学进展, 2020, 32(2/3): 331-343.
[14] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[15] 白凌闯, 赵静, 冯亚凯. 多功能基因递送系统促进内皮细胞增殖[J]. 化学进展, 2019, 31(2/3): 300-310.