English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 2003-2011 前一篇   后一篇

• 综述与评论 •

压力诱导溶液中蛋白质构象变化的谱学研究

张敏, 吴玉清*   

  1. 吉林大学超分子结构与材料国家重点实验室 长春 130012
  • 收稿日期:2011-01-01 修回日期:2011-03-01 出版日期:2011-10-24 发布日期:2011-09-15
  • 作者简介:e-mail:yqwu@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20973004,20473028)资助

Spectroscopic Study on the Pressure-Induced Conformation Change of Protein in Aqueous Solution

Zhang Min, Wu Yuqing*   

  1. State Key Laboratory for Supramolecular Structure and Materials, Jilin University, Changchun 130012, China
  • Received:2011-01-01 Revised:2011-03-01 Online:2011-10-24 Published:2011-09-15

高压诱导蛋白质发生构象变化,引起蛋白质去折叠,并在某种条件下发生聚集,其结果是蛋白质原有的构造被破坏、发生变性。这些过程与蛋白质本身的结构密切相关。同时,折叠中间体结构的揭示对于研究蛋白质去折叠过程也具有重要意义。本文综述了高压诱导下多种谱学方法用于蛋白质构象变化的研究进展,主要包括高压红外光谱、高压荧光光谱及高压小角X射线扫描等多种技术手段在研究中蛋白质构象变化方面所能提供的重要信息,并对相关领域存在的问题及今后的发展作出展望。

Pressure has been used for investigating the unfolding of proteins and for revealing their folding pathways and intermediates, even aggregate states. Since pressure can stabilize partially unfolded states and molten globules of proteins, which plays an important role both in chemical and biological phenomena in the aqueous solution. Here, we review several spectral methods developed for the study of pressure-induced conformation changes of proteins in solution, focus on infrared spectroscopy, fluorescence spectroscopy, small-angle X-ray scattering and so on, which can offer conformational information of proteins in solution in detail. The developing trends in this field are discussed and the outlook of the research area is also provided.

Contents
1 Introduction
2 FT-IR spectroscopic study on pressure-induced structure change of protein
2.1 Pressure-induced hydration change and reversibility of protein
2.2 Pressure-induced conformation transition of protein
2.3 Disulfide effect on pressure-induced conformation change of protein
2.4 Chaotropic and kosmotropic cosolvents effect on pressure-induced conformation change of protein
3 Fluorescence spectroscopic study on pressure induced conformation change of protein
4 Study of pressure induced conformation change of protein by small angle X-ray scattering and other methods
5 Conclusion and outlook

中图分类号: 

()

[1] 王荣民(Wang R M), 朱永峰(Zhu Y F), 何玉凤(He Y F), 李岩(Li Y), 毛崇武(Mao C W), 何乃普(He N P). 化学进展(Progress in Chemistry), 2010, 22: 1952-1963
[2] Karplus M. Fold. Des., 1997, 2: S69-S75
[3] Frauenfelder H, Sligar S G, Wolynes P G. Science, 1991, 254: 1598-1603
[4] Onuchic J N, Luthey-Schulten Z, Wolynes P G. Annu. Rev. Phys. Chem., 1997, 48: 545-600
[5] Timasheff S N. Proc. Natl. Acad. Sci. USA, 2002, 99: 9721- 9726
[6] Timasheff S N. Annu. Rev. Biophys. Biomol. Struct., 1993, 22: 67-97
[7] Cacace M G, Landau E M, Ramsden J J Q. Rev. Biophys., 1997, 30: 241-277
[8] Chalikian T V. Annu. Rev. Biophys. Biomol. Struct., 2003, 32: 207-235
[9] Zhang J, He H W, Wang Q, Yan Y B. Protein Pept. Lett., 2006, 13: 33-40
[10] Yamamoto T, Tasumi M. J. Mol. Struct., 1991, 242: 235-244
[11] Takeda N, Kato M, Taniguchi Y. Biochemistry, 1995, 34: 5980-5987
[12] Navon A, Ittah V, Laity J H, Scheraga H A, Haas E, Gussakovsky E E. Biochemistry, 2001, 40: 93-104
[13] Bridgman P W. J. Biol. Chem., 1914, 19: 511-512
[14] Kauzmann W. Nature, 1987, 325: 763-764
[15] Dzwolak W, Kato M, Taniguchi Y. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol., 2002, 1595: 131-144
[16] Royer C A. Biochim. Biophys. Acta, Protein Struc. Mol. Enzymol., 2002, 1595: 201-209
[17] Hummer G, Garde S, Garcia A E, Paulaitis M E, Pratt L R. Proc. Natl. Acad. Sci. USA, 1998, 95: 1552-1555
[18] Bullock A N, Fersht A R. Nat. Rev. Cancer, 2001, 1: 68-76
[19] Sacchettini J C, Kelly J W. Nat. Rev. Drug. Discov., 2002, 1: 267-275
[20] Horwich A. J. Clin. Invest., 2002, 110: 1221-1232
[21] Caughey B, Lansbury P T. Ann. Rev. Neurosci., 2003, 26: 267-298
[22] Dobson C M. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2001, 356: 133-145
[23] Winklhofer K F, Tatzelt J, Haass C. EMBO. J, 2008, 2: 336-349
[24] Soto C, Estrada L D. Arch. Neurol., 2008, 65: 184-189
[25] Silva J L, Lima L M, Foguel D, Cordeiro Y. Trends Biochem. Sci., 2008, 33: 132-140
[26] Pappu R V, Wang X, Vitalis A, Crick S L. Arch. Biochem. Biophys., 2008, 469: 132-141
[27] Foguel D, Silva J L. Biochemistry, 2004, 43: 11361-11370
[28] Daniel I, Oger P, Winter R. Chem. Soc. Rev., 2006, 35: 858-875
[29] Day R, Garc A E. Proteins, 2008, 70: 1175-1184
[30] Lima S M, Vaz A C, Souza T L, Peabody D S, Silva J L, Oliveira A C. FEBS J., 2006, 273: 1463-1475
[31] Lima L M, Silva J L. J. Biol. Chem., 2004, 279: 47968-47974
[32] Senear D F, Tretyachenko-Ladokhina V, Opel M L, Aeling K A, Hatfield G W, Franklin L M, Darlington R C, Ross J B A. Nucleic Acids Res., 2007, 35: 1761-1772
[33] Rocha C B, Suarez M C, Yu A, Ballard L, Sorenson M M, Foguel D, Silva J L. Biochemistry, 2008, 47: 5047-5058
[34] Dirix C, Meersman F, MacPhee C E, Dobson C M, Heremans K. J. Mol. Biol., 2005, 347: 903-909
[35] Cordeiro Y, Kraineva J, Gomes M P B, Lopes M H, Martins V R, Lima L M T R, Foguel D, Winter R, Silva J L. Biophys. J., 2005, 89: 2667-2676
[36] Chatani E, Kato M, Kawai T, Naiki H, Goto Y. J. Mol. Biol., 2005, 352: 941-951
[37] Silva J L, Cordeiro Y, Foguel D. Biochim. Biophys. Acta, 2006, 1764: 443-451
[38] 孙楠(Sun N), 郑海飞(Zheng H F). 地学前缘(Earth Science Frontiers), 2005, 12: 131-136
[39] Hawley S A. Biochemistry, 1971, 10: 2436-2442
[40] Li T M, Hook J W, Drickamer H G, Weber G. Biochemistry, 1976, 15: 5571-5580
[41] Royer C A, Hinck A P, Loh S N, Prehoda K E, Peng X, Jonas J, Markley J L. Biochemistry, 1993, 32: 5222-5232
[42] Samarasinghe S D, Campbell D M, Jonas A, Jonas J. Biochemistry, 1992, 31: 7773-7778
[43] Taniguchi Y, Suzuki K. J. Phys. Chem., 1983, 87: 5185-5193
[44] Spain I L, Dunstan D J. J. Phys. E Sci. Instrum., 1989, 22: 923-933
[45] Smeller L, Meersman F, Heremans K. Biochim. Biophys. Acta, 2006, 1764: 497-505
[46] Smeller L, Meersman F, Heremans K. Eur. Biophys. J., 2008, 37: 1127-1132
[47] Smeller L, Meersman F, Fidy J, Heremans K. Biochemistry, 2003, 42: 553-561
[48] Goosens K, Smeller L, Frank J, Heremans K. Eur. J. Biochem., 1996, 236: 254-262
[49] Heremans K, Wong P T T. Chem. Phys. Lett., 1985, 118: 101-104
[50] Mitra L, Hata K, Kono R, Maeno A, Isom D, Rouget J B, Winter R, Akasaka K, Garc-Moreno E B, Royer C A. J. Am. Chem. Soc., 2007, 129: 14108-14109
[51] Goncalves R B, Mendes Y S, Soares M R, Katpally U, Smith T J, Silva J L, Oliveira A C. J. Mol. Biol., 2007, 366: 295-306
[52] Goncalves R B, Sanches D, Souza T L, Silva J L, Oliveira A C. Biochemistry, 2008, 47: 3832-3841
[53] Schaeffer R D, Fersht A, Daggett V. Curr. Opin. Struct. Biol., 2008, 18: 4-9
[54] Paschek D, Gnanakaran S, Garcia A E. Proc. Natl. Acad. Sci. USA, 2005, 102: 6765-6770
[55] Ladenstein R, Ren B. FEBS J., 2006, 273: 4170-4185
[56] Pedone E, Ren B, Ladenstein R, Rossi M, Bartolucci S. Eur. J. Biochem., 2004, 271: 3437-3448
[57] Okuno A, Kato M, Taniguchi Y. Biochim. Biophys. Acta, 2006, 1764: 1407-1412
[58] Meersman F, Wang J, Wu Y Q, Heremans K. Macromolecules, 2005, 38: 8923-8928
[59] Wu Y Q, Meersman F, Ozaki Y. Macromolecules, 2006, 39: 1182-1188
[60] Scirè A, Pedone E, Ausili A, Saviano M, Baldassarre M, Bertoli E, Bartolucci S, Tanfani F. Mol. BioSyst., 2010, 6: 2015-2022
[61] Heremans K, Smeller L. Biochim. Biophys. Acta, 1998, 1386: 353-370
[62] D’Auria S, Moracci M, Febbraio F, Tanfani F, Nucci R, Rossi M. Biochimie, 1998, 80: 949-957
[63] Imamura H, Kato M. Proteins, 2009, 75: 911-918
[64] Imamura H, Isogai Y, Takekiyo T, Kato M. Biochim. Biophys. Acta-Proteins and Proteomics, 2010, 1804: 193-198
[65] Sarupria S, Ghosh T, Garcia A E, Garde S. Proteins, 2010, 78: 1641-1651
[66] Carrier D, Mantsch H H, Wong P T T. Biopolymers, 1990, 29: 837-844
[67] Wedemeyer W J, Welker E, Narayan M, Scheraga H A. Biochemistry, 2000, 39: 4207-4216
[68] Meersman F, Heremans K. Biochemistry, 2003, 42: 14234-14241
[69] Yan Y B, Jiang B, Zhang R Q, Zhou H M. Protein Sci., 2001, 10: 321-328
[70] Meersman F, Heremans K. Biophys. Chem., 2003, 104: 297-304
[71] Vijay-Kumar S, Bugg C E, Wilkinson K D, Cook W J. Proc. Natl. Acad. Sci. USA, 1985, 82: 3582-3585
[72] Vijay-Kumar S, Bugg C E, Cook W J. J. Mol. Biol., 1987, 194: 531-544
[73] Love S G, Muir T W, Ramage R, Shaw K T, Alexeev D, Sawyer L, Kelly S M, Price N C, Arnolds J E, Mees M P, Mayer R J. Biochem. J., 1997, 323: 727-734
[74] Herberhold H, Winter R. Biochemistry, 2002, 41: 2396-2401
[75] Marabotti A, Ausili A, Staiano M, Scirè A, Tanfani F, Parracino A, Varriale A, Rossi M, D’Auria S. Biochemistry, 2006, 45: 11885-11894
[76] Herberhold H, Royer C A, Winter R. Biochemistry, 2004, 43: 3336-3345
[77] Gekko K, Timasheff S N. Biochemistry, 1981, 20: 4667-4676
[78] Garcia A F, Heindl P, Voigt H, Buttner M, Butz P, Tauber N, Tauscher B, Pfaff E. J. Biol. Chem., 2005, 280: 9842-9847
[79] Kremer W, Kachel N, Kuwata K, Akasaka K, Kalbitzer H R. J. Biol. Chem., 2007, 282: 22689-22698
[80] Cordeiro Y, Kraineva J, Winter R, Silva J L. Braz. J. Med. Biol. Res., 2005, 38: 1195-1201
[81] Eftink M R, Shastry M C R. Methods Enzymol., 1997, 278: 258-286
[82] Ikeuchi Y, Suzuki A, Oota T, Hagiwara K, Tatsumi R, Ito T, Balny C. Eur. J. Biochem., 2002, 269: 364-374
[83] Ruan K C, Xu C H, Li T T, Li J, Lange R, Balny C. Eur. J. Biochem., 2003, 270: 1654-1661
[84] Timasheff S N. Ann. Rev. Biophys. Biomol. Struct., 1993, 22: 67-97
[85] Kornblatt J A, Kornblatt M J. Biochim. Biophys. Acta, 2002, 1595: 30-47
[86] Parsegian V A, Rand R P, Rau D C. Methods Enzymol., 1995, 259: 43-94
[87] Trovaslet M, Dallet-Choisy S, Meersman F, Heremans K, Balny C, Legoy M D. Eur. J. Biochem., 2003, 270: 119-128
[88] Spinozzi F, Carsughi F, Mariani P, Saturni L, Bernstorff S, Cinelli S, Onori G. J. Phys. Chem. B, 2007, 111: 3822-3830
[89] Ortore M G, Spinozzi F, Mariani P, Paciaroni A, Barbosa L R S, Amenitsch H, Steinhart M, Ollivier J, Russo D. J. R. Soc. Interface, 2009, 6: 619-634
[90] 王世霞 (Wang S X), 郑海飞 (Zheng H F). 光谱学与光谱分析(Spectroscopy and Spectral Analysis), 2009, 29: 979-981
[91] Panick G, Malessa R, Winter R. Biochemistry, 1999, 38: 6512-6519
[92] Kitahara R, Yamada H, Akasaka K. Biochemistry, 2001, 40: 13556-13563
[93] Herberhold H, Marchal S, Lange R, Scheyhing C H, Vogel R F, Winter R. J. Mol. Biol., 2003, 330: 1153-1164
[94] Balch W E, Morimoto R I, Dillin A, Kelly J W. Science, 2008, 319: 916-919

[1] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[2] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[3] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[4] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[5] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[6] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[7] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[8] 刘煦阳, 段潮舒, 蔡文生, 邵学广. 可解释深度学习在光谱和医学影像分析中的应用[J]. 化学进展, 2022, 34(12): 2561-2572.
[9] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[10] 郭玲香, 李菊平, 刘志洋, 李全. 聚集诱导发光型光敏剂用于线粒体靶向光动力治疗[J]. 化学进展, 2022, 34(11): 2489-2502.
[11] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
[12] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[13] 韩鹏博, 徐赫, 安众福, 蔡哲毅, 蔡政旭, 巢晖, 陈彪, 陈明, 陈禹, 池振国, 代淑婷, 丁丹, 董宇平, 高志远, 管伟江, 何自开, 胡晶晶, 胡蓉, 胡毅雄, 黄秋忆, 康苗苗, 李丹霞, 李济森, 李树珍, 李文朗, 李振, 林新霖, 刘骅莹, 刘佩颖, 娄筱叮, 吕超, 马东阁, 欧翰林, 欧阳娟, 彭谦, 钱骏, 秦安军, 屈佳敏, 石建兵, 帅志刚, 孙立和, 田锐, 田文晶, 佟斌, 汪辉亮, 王东, 王鹤, 王涛, 王晓, 王誉澄, 吴水珠, 夏帆, 谢育俊, 熊凯, 徐斌, 闫东鹏, 杨海波, 杨清正, 杨志涌, 袁丽珍, 袁望章, 臧双全, 曾钫, 曾嘉杰, 曾卓, 张国庆, 张晓燕, 张学鹏, 张艺, 张宇凡, 张志军, 赵娟, 赵征, 赵子豪, 赵祖金, 唐本忠. 聚集诱导发光[J]. 化学进展, 2022, 34(1): 1-130.
[14] 任飞, 石建兵, 佟斌, 蔡政旭, 董宇平. 具有聚集诱导发光性质的近红外荧光染料[J]. 化学进展, 2021, 33(3): 341-354.
[15] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.