English
新闻公告
More
化学进展 2011, Vol. 23 Issue (10): 1993-2002   后一篇

• Mini Accounts •

高灵敏共轭聚合物化学传感器

朱春雷, 杨琼, 刘礼兵, 王树*   

  1. 中国科学院化学研究所 北京 100190
  • 收稿日期:2011-05-05 出版日期:2011-10-24 发布日期:2011-09-15
  • 通讯作者: 王树 E-mail:wangshu@iccas.ac.cn
  • 作者简介:Shu Wang was born in 1972 in Cangxian, Hebei Province. He received his B. S. degree from Department of Chemistry, Hebei University in 1994, and Ph.D. degree in organic synthesis at Department of Chemistry, Peking University in 1999. Following two years of postdoctoral research at Institute of Chemistry (1999 –2001), Chinese Academy of Sciences, he moved to Institute of Polymers and Organic Solids, University of California a t Sa nt a Ba r ba r a t o c ont i nue h i s postdoctoral research (2001–2004). In 2004, he became a professor of Institute of Chemist ry, Chinese Academy of Sciences. His current research interests include design, synthesis and properties of light-harvesting conjugated polymers, biosensors and chemical biology.

Conjugated Polymers for Sensitive Chemical Sensors

Zhu Chunlei, Yang Qiong, Liu Libing, Wang Shu*   

  1. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2011-05-05 Online:2011-10-24 Published:2011-09-15
  • Contact: Wang Shu E-mail:wangshu@iccas.ac.cn

金属离子和化学小分子的检测在人类健康、环境污染以及食品安全等领域具有重要意义,科学工作者们已经在设计、发展高灵敏化学传感器方面进行了大量研究。在过去的几十年里,共轭聚合物由于其卓越的光电性质,引起了人们极大的关注,并取得了众多革命性科技进展。最近,利用共轭聚合物的荧光信号放大机制,人们设计、发展了一系列新型的化学和生物传感体系。共轭聚合物的信号传感机制包括电子转移,荧光共振能量转移以及共轭聚合物聚集或构象改变。本文主要介绍我们实验室在利用共轭聚合物实现金属离子和化学小分子荧光检测方面取得的进展,并对未来发展方向与面临的挑战进行了讨论。

The detections of metal ion and chemical small molecule are of great importance in view of their influences on human health, environment pollution, and food safety. Thus, considerable researches have been conducted toward designing and developing highly sensitive chemical sensors. In the past few decades, due to the superior electrical properties, conjugated polymers (CPs) have aroused great attentions and numerous revolutionary advances have emerged. More recently, facilitated by their signalamplifying response to sensing events, the possibility of CPs to be used as fluorescent probes toward designing novel chemical and biological sensors have been exploited. This mini account highlights the recent progress of CPs in our group for the detection of metal ion and chemical small molecule based on fluorescence technique. Three different signal transduction mechanisms, including electron transfer, fluorescence resonance energy transfer (FRET) and analyteinduced aggregation or conformational change, are involved in this account and concretely elaborated with corresponding examples. Finally, challenges confronted by CPs and their future directions are discussed.

Contents
1 Introduction
2 CP-based metal ion detection
3 CP-based chemical small molecule detection
4 Conclusions and outlook

中图分类号: 

()


[1] Ito T, Shirakawa H, Ikeda S. J. Polym. Sci. Chem. Ed., 1974, 12 (1): 11-20.

[2] Chiang C K, Fincher C R, Park Y W, Heeger A J, Shirakawa H, Louis E J, Gau S C, MacDiarmid A G. Phys. Rev. Lett., 1977, 39 (17): 1098-1101.

[3] Heeger A J. Angew. Chem. Int. Ed., 2001, 40 (14): 2591-2611.

[4] Kim J Y, Lee K, Coats N E, Moses D, Nguyen T Q, Dante M, Heeger A J. Science, 2007, 317 (5835): 222-225.

[5] Chua L L, Zaumseil J, Chang J F, Qu E C W, Ho P K H, Sirringhaus H, Friend R H. Nature, 2005, 434 (7030): 194-199.

[6] Samuel I D W, Turnbull G A. Chem. Rev., 2007, 107 (4): 1272-1295.

[7] Yu G, Gao J, Hummelen J C, Wudl F, Heeger A J. Science, 1995, 270 (5243): 1789-1791.

[8] Swager T M. Acc. Chem. Res., 1998, 31 (5): 201-207.

[9] Thomas S W, Joly G D, Swager T M. Chem. Rev., 2007, 107 (4): 1339-1386.

[10] Liu B, Bazan G C. Chem. Mater., 2004, 16 (23): 4467-4476.

[11] Ohshima H, Tatemichi M, Sawa T. Arch. Biochem. Biophys., 2003, 417 (1): 3-11.

[12] Shah A M, Channon K M. Heart, 2004, 90 (5): 486-487.

[13] Barnham K J, Masters C L, Bush A I. Nat. Rev. Drug Discov., 2004, 3 (3): 205-214.

[14] Liebman M, Murphy S. Nutr. Res., 2007, 27(5): 273-278.

[15] Ho H A, Najari A, Leclerc M. Acc. Chem. Res., 2008, 41 (2): 168-178.

[16] Jiang H, Taranekar P, Reynolds J R, Schanze K S. Angew. Chem. Int. Ed., 2009, 48 (24): 4300-4316.

[17] Liu Y, Ogawa K, Schanze K S. J. Photochem. Photobiol. C: Photochem. Rev., 2009, 10 (4): 173-190.

[18] Feng F D, Liu L B, Yang Q, Wang S. Macromol. Rapid Commun., 2010, 31 (16): 1405-1421.

[19] Duan X R, Liu L B, Feng F D, Wang S. Acc. Chem. Res., 2010, 43 (2): 260-270.

[20] Feng X L, Liu L B, Wang S, Zhu D B. Chem. Soc. Rev., 2010, 39 (7): 2411-2419.

[21] Kim J, McQuade D T, McHugh S K, Swager T M. Angew. Chem. Int. Ed., 2000, 39 (21): 3868-3872.

[22] Liu H W, Wang S, Luo Y H, Tang W H, Yu G, Li L, Chen C F, Liu Y Q, Xi F. J. Mater. Chem., 2001, 11 (12): 3063-3067.

[23] Kim I B, Erdogan B, Wilson J N, Bunz U H F. Chem. Eur. J., 2004, 10 (24): 6247-6254.

[24] Kim I B, Dunkhorst A, Gilbert J, Bunz U H F. Macromolecules, 2005, 38 (11): 4560-4562.

[25] Kim I B, Bunz U H F. J. Am. Chem. Soc., 2006, 128 (9): 2818-2819.

[26] He F, Tang Y L, Wang S, Li Y L, Zhu D B. J. Am. Chem. Soc., 2005, 127 (35): 12343-12346.

[27] Tang Y L, He F, Yu M H, Feng F D, An L L, Sun H, Wang S, Li Y L, Zhu D B. Macromol. Rapid Commun., 2006, 27 (6): 389-392.

[28] Yu M H, He F, Tang Y L, Wang S, Li Y L, Zhu D B. Macromol. Rapid Commun., 2007, 28 (12): 1333-1338.

[29] Liu X F, Tang Y L, Wang L H, Zhang J, Song S P, Fan C H, Wang S. Adv. Mater., 2007, 19 (13): 1471-1474.

[30] Xing C F, Shi Z Q, Yu M H, Wang S. Polymer, 2008, 49 (11): 2698-2703.

[31] Lv H Y, Tang Y L, Xu W, Zhang D Q, Wang S, Zhu D B. Macromol. Rapid Commun., 2008, 29 (17): 1467-1471.

[32] Yang J S, Swager T M. J. Am. Chem. Soc., 1998, 120 (46): 11864-11873.

[33] Yang J S, Swager T M. J. Am. Chem. Soc., 1998, 120 (21): 5321-5322.

[34] Cumming C J, Aker C, Fisher M, Fox M, la Grone M J, Reust D, Rockley M G, Swager T M, Towers E, Williams V. IEEE Trans. Geosci. Remote Sensing, 2001, 39 (6): 1119-1128.

[35] Rose A, Lugmair C G, Swager T M. J. Am. Chem. Soc., 2001, 123 (45): 11298-11299.

[36] Yamaguchi S, Swager T M. J. Am. Chem. Soc., 2001, 123 (48): 12087-12088.

[37] Zahn S, Swager T M. Angew. Chem. Int. Ed., 2002, 41 (22): 4225-4230.

[38] Rose A, Zhu Z, Madigan C F, Swager T M, Bulovic V. Nature, 2005, 434 (7035): 876-879.

[39] Thomas S W, Amara J P, Bjork R E, Swager T M. Chem. Commun., 2005, (36): 4572-4574.

[40] Thomas S W, Swager T M. Adv. Mater., 2006, 18 (8): 1047-1049.

[41] Tang Y L, He F, Yu, M H, Wang S, Li Y L, Zhu D B. Chem. Mater., 2006, 18 (16): 3605-3610.

[42] He F, Tang Y L, Yu M H, Wang S, Li Y L, Zhu D B. Adv. Funct. Mater., 2006, 16 (1): 91-94.

[43] He F, Feng F D, Wang S, Li Y L, Zhu D B. J. Mater. Chem., 2007, 17 (35): 3702-3707.

[44] Sun H, Feng F D, Yu M H, Wang S, Li Y L, Zhu D B. Macromol. Rapid Commun., 2007, 28 (18/19): 1905-1911.

[45] Xing C F, Yu M H, Wang S, Shi Z Q, Li Y L, Zhu D B. Macromol. Rapid Commun., 2007, 28 (3): 241-245.

[46] Lv F T, Feng X L, Tang H W, Liu L B, Yang Q, Wang S. Adv. Funct. Mater., 2011, 21 (5): 845-850.

[47] Lee J, Jun H, Kim J. Adv. Mater., 2009, 21 (36): 3674-3677.

[48] Zhao X Y, Schanze K S. Chem. Commun., 2010, 46 (33): 6075-6077.

[49] Esser B, Swager T M. Angew. Chem. Int. Ed., 2010, 49 (47): 8872-8875.

[50] Lee K M, Chen X Q, Fang W, Kim J M, Yoon J. Macromol. Rapid Commun., 2011, 32 (6): 497-500

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[6] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[9] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[10] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[11] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[12] 孙义民, 李厚燊, 陈振宇, 王东, 王展鹏, 肖菲. MXene在电化学传感器中的应用[J]. 化学进展, 2022, 34(2): 259-271.
[13] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[14] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[15] 赵静, 王子娅, 莫黎昕, 孟祥有, 李路海, 彭争春. 微结构化柔性压力传感器的性能增强机制、实现方法与应用优势[J]. 化学进展, 2022, 34(10): 2202-2221.
阅读次数
全文


摘要

高灵敏共轭聚合物化学传感器