English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 595-604 前一篇   后一篇

• 综述与评论 •

混合型超级电容器的研究进展

刘海晶, 夏永姚*   

  1. 复旦大学化学系 上海市分子催化与先进材料重点实验室 新能源研究院 上海 200433
  • 收稿日期:2010-09-01 修回日期:2010-10-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:yyxia@fudan.edu.cn E-mail:yyxia@fudan.edu.cn
  • 基金资助:

    国家自然科学基金委杰出青年基金和重点项目(No.20925312,20633040),国家科技部973计划项目(No.2007CB209703),上海市科委优秀学科带头人计划(No.09XD1400300)资助

Research Progress of Hybrid Supercapacitor

Liu Haijing, Xia Yongyao*   

  1. Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Department of Chemistry, Fudan University, Shanghai 200433, China
  • Received:2010-09-01 Revised:2010-10-01 Online:2011-03-24 Published:2011-01-26

与传统的二次电池相比,超级电容器具有长寿命、高功率密度的特点,但是能量密度较低。本文主要介绍了混合超级电容器的发展状况以及电极材料的最新研究进展。目前有许多研究工作者都致力于改善超级电容器体系的能量密度,一个有效的途径是提高电容器电极材料的比电容,另一个途径则应用不对称混合型超级电容器体系,即一个电极采用电极活性炭电极,而另一个电极采用赝电容电极材料或电池电极材料,通过提高电容器的工作电压,从而提高电容器的能量密度。针对提高混合型超级电容器能量密度的工作主要集中在采用具有氧化还原活性的材料与活性炭组成不对称超级电容器,比如:活性炭/NiOOH (FeOOH), 活性炭/石墨, 活性炭/金属氧化物以及活性炭/聚合物等混合超级电容器。近年来,锂离子嵌入化合物以及锂离子电池碳材料作为混合超级电容器的正极材料得到了广泛的关注。同时,介绍了针对由水系锂离子电池电极材料作为正极,活性炭作为负极组成的混合型超级电容器开展的研究工作,其正极材料包括LiMn2O4, LiCoO2, LiTi2(PO4)3以及LiCo1/3Ni1/3Mn1/3O2等。以上混合型超级电容器相比于活性炭/活性炭双电层电容器,均在能量密度的提高以及工作电压的提高上得到了较大的进展。最后本文还对近几年比较热门的几种混合型电化学电容器和相关材料的未来发展趋势作了简单介绍。

Compared with conventional secondary batteries, electrochemical supercapacitors exhibit the long cycling life and high power density, but with low energy density. In order to improve the energy density of supercapacitor, the most promising approaches are either to use an electrode material with large specific capacitance or increase its working voltage by utilizing a hybrid supercapacitor system which consist an activated carbon electrode and a battery elelctrode material (pseudo-capacitor material). The present paper introduces the development of the hybrid supercapacitor and the recent research on the electrode materials for hybrid supercapacitor. Many studies have been undertaken for the various hybrid supercapacitor systems to obtain higher energy density, coupling redox-active material electrodes with activated carbon electrode, such as activated carbon/NiOOH (FeOOH), activated carbon/graphite, activated carbon/metal oxides and activated carbon/polymer hybrid supercapacitors. Recently, Li-ion intercalated compounds Li4Ti5O12 and lithium-ion battery carbon materials are attracting much attention as positive electrode with a negative activated carbon electrode. At the same time, many researches focus on the various hybrid capacitor systems consisting of negative activated carbon electrode and positive aqueous Lithium-ion battery materials electrode, such as LiMn2O4, LiCoO2, LiTi2(PO4)3 and LiCo1/3Ni1/3Mn1/3O2.These hybrid supercapacitors are improved in energy density and also with the working voltage increased, comparing with the traditional activated carbon/activated carbon electrochemical double-layer capacitor. In the paper, the research situation and development tend of several kinds of hybrid systems and the currently studied relative materials are also introduced.

中图分类号: 

()

[1] Conway B E. Electrochemical Supercapacitors, New York: Kluwer, Academic/Plenum Publishers, 1999
[2] Conway B E. J. Electrochem. Soc., 1991, 138(6): 1539-1548
[3] Zheng J P, Jow T R. J. Electrochem. Soc., 1995, 142(1): L6-L8
[4] Huggins R A. Solid State Ionics, 2000, 134 (1/2): 179-195
[5] 南俊民(Nan J M),杨勇(Yang Y),林祖赓(Lin Z G). 电源技术(Chinese Journal of Power Sources), 1996,20(4): 152-156
[6] Faggioli E, Rena P, Danel V. J. Power Sources, 1999, 84(2): 261-269
[7] Chu A, Braatz P. J. Power Sources, 2002, 112(1): 236-246
[8] Shukla A K, Aricò A S, Antonucci V. Renewable and Sustainable Energy Reviews, 2001, 5(2): 137-155
[9] Ktz R, Carlen M. Electrochim. Acta, 2000, 45(15/16): 2483-2498
[10] Conway B E, Pell W G. J. Power Sources, 2002, 105(2): 169-181
[11] Pell W G, Conway B E. J. Power Sources, 2001, 96(1): 57-67
[12] Zheng J P. J. Electrochem. Soc., 1995, 142(8): 2699-2703
[13] Zheng J P. J. Electrochem. Soc., 1995, 143(3): 1068-1072
[14] Sikha G, White R E, Popov B N. J. Electrochem. Soc., 2005, 152: A1682-A1693
[15] Wang Y G, Cheng L, Xia Y Y. J. Power Source, 2006, 153: 191-196
[16] Khomenko V, Raymundo-Pinero E, Beguin F. J. Power Source, 2006, 153: 183-190
[17] Cheng L, Li H Q, Xia Y Y. J. Solid State Electrochem., 2006, 10: 405-410
[18] Nohara S, Toshihide A A, Wada H, Furukawa N, Inoue H, Sugoh N, Iwasaki H, Iwakura C. J. Power Sources, 2006, 157: 605-609
[19] Amatucci G G, Badway F, Pasquier A D, Zheng T. J. Electrochem. Soc., 2001, 148: A930-A939
[20] Wang H Y, Yoshio M, Electrochem. Commun., 2006, 8: 1481-1486
[21] Yoshio M, Nakamura H, Wang H Y. Electrochemical and Solid State Letters, 2006, 9: A561-A563
[22] Wang Y G, Xia Y Y. J. Electrochem. Soc., 2006, 153: A450-A454
[23] Wang Y G, Luo J Y, Wang C X, Xia Y Y. J. Electrochem. Soc., 2006, 153: A1425-A1431
[24] Wang Y G, Lou J Y, Wu W, Wang C X, Xia Y Y. J. Electrochem. Soc., 2007, 154: A228-A234
[25] Wang Y G, Wang Z D, Xia Y Y. Electrochim. Acta, 2005, 50: 5641-5646
[26] 田志宏(Tian Z H),赵海雷(Zhao H L),李明(Li M),王治峰(Wang Z F),仇卫华(Qiu W H). 电池(Battery Bimonthly), 2006, 36(6), 469-471
[27] Stan Zurek. Ragone plot showing energy density vs. power density for various devices. Vector conversion from Image: Supercapacitors chart. png, from Maxwell Technologies. . http: //www.maxwell.com (The plot presented here is based on data provided by Maxwell Technologies.)
[28] Zheng J P. J. Electrochem. Soc., 2003, 150: A484-A492
[29] Varakin I N, Kiementov A D, Litvineko S V, Proceedings of the 8th International Seminar on Double-layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, FL, 1998
[30] 刘志祥(Liu Z X),张密林(Zhang M L),闪星(Shan X). 电源技术(Chinese Journal of Power Sources),2001,25(5): 354-356
[31] Wang Y G, Yu L, Xia Y Y. J. Electrochem. Soc., 2006, 153: A743-A748
[32] Singhal A, Skandan G, Amatucci G. J. Power Sources, 2004, 129: 38-44
[33] Kavan L, Prochazka J, Spitler T M. J. Electrochem. Soc., 2003, 150: A1000-A1007
[34] Kanamura K, Umegaki T, Naito H. J. Appl. Electrochem., 2001, 31: 73-78
[35] Ohzuku T, Ueda A, Yamamoto N. J. Electrochem. Soc., 1995, 142: 1431-1435
[36] Pasquier D A, Laforgue A, Simon P. J. Power Sources, 2004, 125(1): 95-102
[37] Rao C V, Rambabu B. Solid State Ionics, 2010, 181: 839-843
[38] Cheng L, Liu H J, Zhang J J, Xiong H M, Xia Y Y. J. Electrochem. Soc., 2006, 153 (8): A1472-1477
[39] Cheng L, Li X L, Liu H J, Xiong H M, Zhang P W, Xia Y Y. J. Electrochem. Soc., 2007, 154: A228-A234
[40] Ando N, Taguchi M, Marumo C. Proceedings of 2010 International Conference on Advanced Capacitors, Kyoto Terrsa, Japan, 2010
[41] Luo J Y, Liu J L, He P, Xia Y Y. Electrochim. Acta, 2008, 53: 8128-8133
[42] Luo J Y, Xia Y Y. J. Power Sources, 2009, 186: 224-227
[43] Nam K W, Yoon W S, Kim K B. Electrochim. Acta, 2002, 47 (19): 3201-3209
[44] 汪形艳(Wang X Y), 王先友(Wang X Y), 黄伟国(Huang W G), 湘潭大学自然科学学报(Natural Science Journal of Xiangtan University), 2004, 26 (3): 287-290
[45] Jow T R, Zheng J P,Ding S P. The 7th International Seminaron Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach,FL, 1997
[46] Evans D,Zheng J P,Roberson S. Proceedings of the 9th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfidd Beach, Florida, 1999
[47] 汪形艳(Wang X Y), 王先友(Wang X Y), 黄伟国(Huang W G). 电池(Battery Bimonthly), 2004, 34 (3): 192-193
[48] Kim H K, Seong T Y, Lim J H. J. Power Sources, 2001, 102 ( 1/ 2): 167-171
[49] Hu C C, Tsou T W. Electrochem. Commun., 2002, 4 (2): 105-109
[50] 庄凯 (Zhuang K),梁逵 (Liang K),李兵红(Li B H). 西华大学学报(自然科学版)(Journal of Xihua University(Natural Science Edition)),2006,25(1):6-7
[51] Pang S C, Anderson M A, Chapman T W. J. Electrochem Soc., 2000, 147 (2): 444-450
[52] 杜嬛(Du X), 王成扬(Wang C Y), 陈明鸣(Chen M M), 焦旸(Jiao Y). 无机材料学报(Journal of Inorganic Materials),2008,23(6): 1193-1198
[53] 汪形艳(Wang X Y), 王先友(Wang X Y), 侯天兰(Hou T L), 李俊(Li J), 黄庆华(Huang Q H). 化工学报(Chemical Industry and Engineering Progress),2006,57(2): 442-447
[54] 闪星(Shan X),张密林(Zhang M L),董国君(Dong G J). 电源技术(Chinese Journal of Power Sources),2002,26(2): 92-94
[55] Hong M S, Lee S H, Kim S W. Electrochem. Solid-State Lett., 2002, 5(10): A227-A230
[56] Volfkoviceh Y M, Shmatko P A. Proceedings of the 8th International Seminar on Double-layer Capacitors and Similar Energy Storage Devices, Deerfield Beach, FL, 1998
[57] Arbizzani C, Mastragostino M, Soavi F. J. Power Sources, 2001, l00(1/2):164-170
[58] Laforgue P, Simon P, Fauvarque J F. J. Eleetrochem. Soc., 2003, 150(5):A645-A651>
[44] 汪形艳(Wang X Y), 王先友(Wang X Y), 黄伟国(Huang W G), 湘潭大学自然科学学报(Natural Science Journal of Xiangtan University), 2004, 26 (3): 287—290

[45] Jow T R, Zheng J P,Ding S P. The 7th International Seminaron Double Layer Capacitors and Similar Energy Storage Devices, Deerfield Beach,FL, 1997

[46] Evans D,Zheng J P,Roberson S. Proceedings of the 9th International Seminar on Double Layer Capacitors and Similar Energy Storage Devices, Deerfidd Beach, Florida, 1999

[47] 汪形艳(Wang X Y), 王先友(Wang X Y), 黄伟国(Huang W G). 电池(Battery Bimonthly), 2004, 34 (3): 192—193

[48] Kim H K, Seong T Y, Lim J H. J. Power Sources, 2001, 102 ( 1/ 2): 167—171

[49] Hu C C, Tsou T W. Electrochem. Commun., 2002, 4 (2): 105—109

[50] 庄凯 (Zhuang K),梁逵 (Liang K),李兵红(Li B H). 西华大学学报(自然科学版)(Journal of Xihua University(Natural Science Edition)),2006,25(1):6—7

[51] Pang S C, Anderson M A, Chapman T W. J. Electrochem Soc., 2000, 147 (2): 444—450

[52] 杜嬛(Du X), 王成扬(Wang C Y), 陈明鸣(Chen M M), 焦旸(Jiao Y). 无机材料学报(Journal of Inorganic Materials),2008,23(6): 1193—1198

[53] 汪形艳(Wang X Y), 王先友(Wang X Y), 侯天兰(Hou T L), 李俊(Li J), 黄庆华(Huang Q H). 化工学报(Chemical Industry and Engineering Progress),2006,57(2): 442—447

[54] 闪星(Shan X),张密林(Zhang M L),董国君(Dong G J). 电源技术(Chinese Journal of Power Sources),2002,26(2): 92—94

[55] Hong M S, Lee S H, Kim S W. Electrochem. Solid-State Lett., 2002, 5(10): A227—A230

[56] Volfkoviceh Y M, Shmatko P A. Proceedings of the 8th International Seminar on Double-layer capacitors and Similar Energy Storage Devices, Deerfield Beach, FL, 1998

[57] Arbizzani C, Mastragostino M, Soavi F. J. Power Sources, 2001, l00(1/2):164—170

[58] Laforgue P, Simon P, Fauvarque J F. J. Eleetrochem. Soc., 2003, 150(5):A645—A651

 

[1] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[2] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 李祥业, 白天娇, 翁昕, 张冰, 王珍珍, 何铁石. 电纺纤维在超级电容器中的应用[J]. 化学进展, 2021, 33(7): 1159-1174.
[5] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[6] 谭莎, 马建中, 宗延. 聚(3,4-乙烯二氧噻吩)∶聚苯乙烯磺酸/无机纳米复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1841-1855.
[7] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[8] 赵少飞, 刘鹏, 程高, 余林, 曾华强. 自支撑硫镍基电极材料制备及其赝电容性能[J]. 化学进展, 2020, 32(10): 1582-1591.
[9] 佟国宾, 鄂雷, 徐州, 马春慧, 李伟, 刘守新. 基于离子液体的炭材料制备、改性及应用[J]. 化学进展, 2019, 31(8): 1136-1147.
[10] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[11] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[12] 鲍长远, 韩家军*, 程瑾宁, 张瑞涛. 石墨烯-聚苯胺类超级电容器复合电极材料[J]. 化学进展, 2018, 30(9): 1349-1363.
[13] 姚送送, 李诺, 叶红齐, 韩凯*. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7): 932-946.
[14] 许頔, 沈沪江*, 袁慧慧, 王炜, 解俊杰. 聚(3,4-乙撑二氧噻吩)基电极材料:制备、改性及在电子器件中的应用[J]. 化学进展, 2018, 30(2/3): 252-271.
[15] 池滨, 侯三英, 刘广智, 廖世军*. 高性能高功率密度质子交换膜燃料电池膜电极[J]. 化学进展, 2018, 30(2/3): 243-251.
阅读次数
全文


摘要

混合型超级电容器的研究进展