English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 557-568 前一篇   后一篇

• 综述与评论 •

染料敏化太阳能电池固态电解质

秦达, 郭晓枝, 孙惠成, 罗艳红, 孟庆波*, 李冬梅*   

  1. 中国科学院物理研究所 清洁能源实验室 北京 100190
  • 收稿日期:2010-09-01 修回日期:2010-12-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:qbmeng@aphy.iphy.ac.cn; dmli@aphy.iphy.ac.cn E-mail:qbmeng@aphy.iphy.ac.cn; dmli@aphy.iphy.ac.cn
  • 基金资助:

    国家自然科学基金项目(No.20725311, 20673141, 20703063, 20721140647,51072211)、国家高技术发展计划(863)项目(No.2006AA03Z341,2009AA033101)和中国科学院“百人计划”及知识创新工程项目(No.KJCX2-YW-W27, KGCX2-YW-363 and KGCX2-YW-386-1) 资助

Solid State Electrolytes for Dye-Sensitized Solar Cells

Qin Da, Guo Xiaozhi, Sun Huicheng, Luo Yanhong, Meng Qingbo*, Li Dongmei*   

  1. Renewable Energy Laboratory, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2010-09-01 Revised:2010-12-01 Online:2011-03-24 Published:2011-01-26

染料敏化太阳能电池(DSCs)具有成本低廉、制作工艺简单、光电转换效率较高等优点,在新一代薄膜太阳能电池中,被认为是最具市场潜力的新型太阳能电池之一。电解质在染料敏化太阳能电池中起到桥梁作用,担负着还原染料、输运载流子完成电池内部循环的作用。液态电解质虽然效率高,但是易挥发和泄露,对电池的稳定性和寿命有很大的影响。因此,设计、制备高性能的固态电解质是DSCs电池发展的必然趋势,并且对电池实用化和产业化具有重要意义。本文介绍了DSCs电池的基本结构和工作原理,结合本实验室在DSCs电池方面的工作,着重阐述固态电解质的研究现状及发展趋势。

Dye-sensitized solar cells (DSCs) are promising alternative to conventional Si-based solar cells due to their low cost, easy fabrication and relatively high conversion efficiency. In the DSC, the electrolyte plays an important role in the regeneration of dye molecules and the charge transportation. Although the DSCs based on the liquid electrolyte can present much better photovoltaic performance, the disadvantages of the liquid electrolytes ( i.e. volatility and easy leakage) are supposed to reduce the long-term stability. Therefore, the development of (quasi) solid-state electrolytes is necessary and imperative. In this paper, the recent progress on the solid-state electrolytes and the prospects are given.

中图分类号: 

()

[1] ORegan B, Grtzel M. Nature, 1991, 353(6346): 737-740
[2] Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L. Jpn. J. Appl. Phys., 2006, 45(25): L638-L640
[3] Green M A, Emery K, Hishikawa Y, Warta W. Prog. Photovolt: Res. Appl., 2010, 18(5): 346-352
[4] 于哲勋(Yu Z X), 李冬梅(Li D M), 秦达(Qin D), 孙惠成(Sun H C), 张一多(Zhang Y D), 罗艳红(Luo Y H), 孟庆波(Meng Q B). 中国材料进展(Materials China), 2010, 28(7/8): 8-15
[5] 李文欣(Li W X), 胡林华(Hu L H), 戴松元(Dai S Y). 中国材料进展(Materials China),2010, 28(7/8): 20-25
[6] 郭磊(Guo L), 潘旭(Pan X), 戴松元(Dai S Y). 化学进展(Prog. Chem.), 2008, 20(10): 1595-1605
[7] Wang Y. Sol. Energy Mater. Sol. Cells, 2009, 93(8): 1167-1175
[8] 盛显良(Sheng X L), 刘娜仁(Liu N R), 翟锦(Zhai J), 安丽平(An L P). 化学进展(Prog. Chem.), 2008, 21(9): 1969-1979
[9] Pagliaro M, Palmisano G, Ciriminna R, Loddo V. Energy Environ. Sci., 2009, 2(8): 838-844
[10] Liu X, Luo Y, Li H, Fan Y, Yu Z, Lin Y, Chen L, Meng Q. Chem. Commun., 2007, 2847-2849
[11] Murakami T N, Grtzel M. Inorg. Chim. Acta, 2008, 361(3): 572-580
[12] Papageorgiou N. Coordin. Chem. Rev., 2004, 248(13/14): 1421-1446
[13] Huang X, Zhang Y, Sun H, Li D, Luo Y, Meng Q. J. Renewable Sustainable Energy, 2009, 1: art. no. 063107
[14] Nazeeruddin M K, Kay A, Rodicio I, Humpbry-Baker R, Müller E, Liska P, Vlachopoulos N, Grtzel M. J. Am. Chem. Soc., 1993, 115(14): 6382-6390
[15] Grtzel M. Inorg. Chem., 2005, 44(20): 6841-6851
[16] Hagfeldt A, Grtzel M. Acc. Chem. Res., 2000, 33(5): 269-277
[17] Trupke T, Würfel P, Uhlendorf I. J. Phys. Chem. B, 2000, 104(48): 11484-11488
[18] Kamat P V. J. Phys. Chem. C, 2008, 112(48): 18737-18753
[19] Lee Y L, Lo Y S. Adv. Funct. Mater., 2009, 19(4): 604-609
[20] Zhang Q, Zhang Y, Huang S, Huang X, Luo Y, Meng Q, Li D. Electrochem. Commun., 2010, 12(2): 327-330
[21] Wang Q, Ito S, Grtzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H. J. Phys. Chem. B, 2006, 110(50): 25210-25221
[22] Luo Y, Li D, Meng Q. Adv. Mater., 2009, 21(45): 4647-4651
[23] Huang Z, Liu X, Li K, Li D, Luo Y, Li H, Song W, Chen L, Meng Q. Electrochem. Commun., 2007, 9(4): 596-598
[24] Sun H, Luo Y, Zhang Y, Li D, Yu Z, Li K, Meng Q. J. Phys. Chem. C, 2010, 114(26): 11673-11679
[25] Grtzel M. Nature, 2001, 414(6861): 338-344
[26] Sapp S A, Elliott C M, Contado C, Caramori S, Bignozzi C A. J. Am. Chem. Soc., 2002, 124(37): 11215-11222
[27] Wang P, Zakeeruddin S M, Moser J E, Humphry-Baker R, Grtzel M. J. Am. Chem. Soc., 2004, 126(23): 7164-7165
[28] Zhang Z, Chen P, Murakami T N, Zakeeruddin S M, Grtzel M. Adv. Funct. Mater., 2008, 18(2): 341-346
[29] Li D, Li H, Luo Y, Li K, Meng Q, Armand M, Chen L. Adv. Funct. Mater., 2010, 20(19): 3358-3365
[30] Wang M, Chamberland N, Breau L, Moser J E, Humphry-Baker R, Marsan B, Zakeeruddin S M, Grtzel M. Nature Chem., 2010, 2(5): 385-389
[31] Yanagida S, Yu Y, Manseki K. Acc. Chem. Res., 2009, 42(11): 1827-1838
[32] Sirimanne P M, Perera V P S. Phys. Stat. Sol. (b), 2008, 245( 9): 1828-1833
[33] Tennakone K, Kumara G R R A, Kottegoda I R M, Wijayantha K G U, Perera V P S. J. Phys. D: Appl. Phys., 1998, 31(12): 1492-1496
[34] Tennakone K, Senadeera G K R, de Silva D B R A, Kottegoda I R M. Appl. Phys. Lett., 2000, 77(15): 2367-2369
[35] Tennakone K, Kumara G R R A, Kumarasinghe A R, Wijayantha K G U, Sirimanne P M. Semicond. Sci. Tech., 1995, 10 (12): 1689-1693
[36] ORegan B, Schwartz D T, Zakeeruddin S M, Grtzel M. Adv. Mater., 2000, 12(17): 1263-1267
[37] ORegan B C, Lenzmann F. J. Phys. Chem. B, 2004, 108(14): 4342-4350
[38] Kumara G R A, Konno A, Shiratsuchi K, Tsukahara J, Tennakone K. Chem. Mater., 2002, 14(3): 954-955
[39] Kumara G R A, Kaneko S, Okuya M, Tennakone K. Langmuir, 2002, 18(26): 10493-10495
[40] Perera V P S, Senevirathna M K I, Pitigala P K D D P, Tennakone K. Sol. Energy Mater. Sol. Cells, 2005, 86(3): 443-450
[41] Kumara G R A, Okuya M, Murakami K, Kaneko S, Jayaweera V V, Tennakone K. J. Photochem. Photobio. A, 2004, 164(1/3): 183-185
[42] ORegan B C, Scully S, Mayer A C, Palomares E, Durrant J. J. Phys. Chem. B, 2005, 109(10): 4616-4623
[43] Bandara J, Tennakone K. J. Colloid Interface Sci., 2001, 236(2): 375-378
[44] Meng Q B, Takahashi K, Zhang X T, Sutanto I, Rao T N, Sato O, Fujishima A. Langmuir, 2003, 19(9): 3572-3574
[45] Rusop M, Shirata T, Sirimanne P M, Soga T, Jimbo T, Umeno M. Appl. Surf. Sci., 2006, 252(20): 7389-7396
[46] Kumara G R R A, Konno A, Senadeera G K R, Jayaweera P V V, de Silva D B R A, Tennakone K. Sol. Energy Mater. Sol. Cells, 2001, 69(2): 195-199
[47] Perera V P S, Pitigala P K D D P, Jayaweera P V V, Bandaranayake K M P, Tennakone K. J. Phys. Chem. B, 2003, 107(50): 13758-13761
[48] Perera V P S, Pitigala P K D D P, Senevirathne M K I, Tennakone K. Sol. Energy Mater. Sol. Cells, 2005, 85(1): 91-98
[49] Kumara G R A, Kaneko S, Okuya M, Onwona-Agyeman B, Konno A, Tennakone K. Sol. Energy Mater. Sol. Cells, 2006, 90(9): 1220-1226
[50] Premalal E V A, Kumara G R R A, Rajapakse R M G, Shimomura M, Murakami K, Konno A. Chem. Commun., 2010, 46(19): 3360-3362
[51] Bach U, Lupo D, Comte P, Moser J E, Weissrtel F, Salbeck J, Spreitzer H, Grtzel M. Nature, 1998, 395(6702): 583-585
[52] Boucharef M, Bin C D, Boumaza M S, Colas M, Snaith H J, Ratier B, Bouclé J. Nanotechnology, 2010, 21(20): art. no. 205203
[53] Docampo P, Guldin S, Stefik M, Tiwana P, Orilall M C, Hüttner S, Sai H, Wiesner U, Steiner U, Snaith H J. Adv. Funct. Mater., 2010, 20(11): 1787-1796
[54] Li T C, Góes M S, Fabregat-Santiago F, Bisquert J, Bueno P R, Prasittichai C, Hupp J T, Marks T J. J. Phys. Chem. C, 2009, 113(42): 18385-18390
[55] Chen P, Yum J H, De Angelis F, Mosconi E, Fantacci S, Moon S J, Baker R H, Ko J, Nazeeruddin M K, Grtzel M. Nano Lett., 2009, 9(6): 2487-2492
[56] Snaith H J, Petrozza A, Ito S, Miura H, Grtzel M. Adv. Funct. Mater., 2009, 19(11): 1810-1818
[57] Snaith H J, Moule A J, Klein C, Meerholz K, Friend R H, Grtzel M. Nano Lett., 2007, 7(11): 3372-3376
[58] Lee H J, Leventis H C, Moon S J, Chen P, Ito S, Haque S A, Torres T, Nüesch F, Geiger T, Zakeeruddin S M, Grtzel M, Nazeeruddin M K. Adv. Funct. Mater., 2009, 19(17): 2735-2742
[59] Kirchmeyer S, Reuter K. J. Mater. Chem., 2005, 15(21): 2077-2088
[60] Saito Y, Kubo W, Kitamura T, Wada Y, Yanagida S. J. Photochem. Photobio. A, 2004, 164(1/3): 153-157
[61] Sakurai S, Jiang H Q, Takahashi M, Kobayashi K. Electrochim. Acta, 2009, 54(23): 5463-5469
[62] Saito Y, Kitamura T, Wada Y, Yanagida S. Synth. Met., 2002, 131(1/3): 185-187
[63] Saito Y, Fukuri N, Senadeera R, Kitamura T, Wada Y, Yanagida S. Electrochem. Commun., 2004, 6(1): 71-74
[64] Senadeera R, Fukuri N, Saito Y, Kitamura T, Wada Y, Yanagida S. Chem. Commun., 2005, (17): 2259-2261
[65] Xia J, Masaki N, Lira-Cantu M, Kim Y, Jiang K, Yanagida S. J. Am. Chem. Soc., 2008, 130(4): 1258-1263
[66] Liu X, Zhang W, Uchida S, Cai L, Liu B, Ramakrishna S. Adv. Mater., 2010, 22(20): E150-E155
[67] Tan S, Zhai J, Wan M, Meng Q, Li Y, Jiang L, Zhu D. J. Phys. Chem. B, 2004, 108(48): 18693-18697
[68] Cervini R, Cheng Y, Simon G. J. Phys. D: Appl. Phys., 2004, 37(1): 13-20
[69] Wang Y, Yang K, Kim S C, Nagarajan R, Samuelson L A, Kumar J. Chem. Mater., 2006, 18(18): 4215-4217
[70] Wang H X, Xue B F, Hu Y S, Wang Z X, Meng Q B, Huang X J, Chen L Q. Electrochem. Solid State Lett., 2004, 7(10): A302-A305
[71] Wang H, Wang Z, Xue B, Meng Q, Huang X, Chen L. Chem. Commun., 2004, (19): 2186-2187
[72] Shi S, Xu L, Ouyang C, Wang Z, Chen L. Ionics, 2006, 12(6): 343-347
[73] Wang H, Li H, Xue B, Wang Z, Meng Q, Chen L. J. Am. Chem. Soc., 2005, 127(17): 6394-6401
[74] Wang H, Liu X, Wang Z, Li H, Li D, Meng Q, Chen L. J. Phys. Chem. B, 2006, 110(12): 5970-5974
[75] Xue B, Wang H, Hu Y, Li H, Wang Z, Meng Q, Huang X, Chen L, Sato O, Fujishima A. C. R. Chimie, 2006, 9(5/6): 627-630
[76] An H, Xue B, Li D, Li H, Meng Q, Guo L, Chen L. Electrochem. Commun., 2006, 8(1): 170-172
[77] Yu Z, Li H, Li K, Qin D, Deng M, Li D, Luo Y, Meng Q, Chen L. Electrochim. Acta, 2010, 55(3): 895-902
[78] Nogueira A F, Longo C, De Paoli M A. Coordin. Chem. Rev., 2004, 248(13/14): 1455-1468
[79] Katsaros G, Stergiopoulos T, Arabatzis I M, Papadokostaki K G, Falaras P. J. Photochem. Photobio. A, 2002, 149(1/3): 191-198
[80] Stergiopoulos T, Arabatzis I M, Katsaros G, Falaras P. Nano Lett., 2002, 2(11): 1259-1261
[81] Kim J H, Kang M S, Kim Y J, Won J, Park N G, Kang Y S. Chem. Commun., 2004, (14): 1662-1663
[82] Singh P K, Kim K W, Rhee H W. Electrochem. Commun., 2009, 11(6): 1247-1250
[83] Akhtar M S, Park J G, Lee H C, Lee S K, Yang O B. Electrochim. Acta, 2010, 55(7): 2418-2423
[84] Li Q, Wu J, Tang Q, Lan Z, Li P, Zhang T. Polym. Compos., 2009, 30(11): 1687-1692
[85] Han H, Liu W, Zhang J, Zhao X Z. Adv. Funct. Mater., 2005, 15(12): 1940-1944
[86] Kang M S, Kim Y J, Won J, Kang Y S. Chem. Commun., 2005, (21): 2686-2688
[87] Kang M-S, Kim J H, Won J, Kang Y S. J. Phys. Chem. C, 2007, 111(13): 5222-5228
[88] Lee J Y, Bhattacharya B, Kim D W, Park J K. J. Phys. Chem. C, 2008, 112(32): 12576-12582
[89] Bang S Y, Lee K J, Koh J H, Kang M S, Kang Y S, Kim J H. Ionics, 2008, 14(2): 143-148
[90] Zhou Y, Xiang W, Chen S, Fang S, Zhou X, Zhang J, Lin Y. Electrochim. Acta, 2009, 54(26): 6645-6650
[91] Zhou Y, Xiang W, Chen S, Fang S, Zhou X, Zhang J, Lin Y. Chem. Commun., 2009, (26): 3895-3897
[92] Rika, Ahmad A, Rahman M Y A, Salleh M M. Physica B, 2009, 404(8/11): 1359-1361
[93] Kim J H, Kang M S, Kim Y J, Won J, Kang Y S. Solid State Ion., 2005, 176(5/6): 579-584
[94] Wu J, Hao S, Lan Z, Lin J, Huang M, Huang Y, Li P, Yin S, Sato T. J. Am. Chem. Soc., 2008, 130(35): 11568-11569
[95] Xiang W, Zhou Y, Yin X, Zhou X, Fang S, Lin Y. Electrochim. Acta, 2009, 54(17): 4186-4191
[96] Jeon L S, Kim S Y, Kim S J, Lee Y G, Kang M S, Kang Y S. J. Photochem. Photobio. A, 2010, 212(2/3): 88-93
[97] Sangeetha N M, Maitra U. Chem. Soc. Rev., 2005, 34(10): 821-836
[98] Kubo W, Kitamura T, Hanabusa K, Wada Y, Yanagida S. Chem. Commun., 2002, (4): 374-375
[99] Kubo W, Kambe S, Nakade S, Kitamura T, Hanabusa K, Wada Y, Yanagida S. J. Phys. Chem. B, 2003, 107(18): 4374-4381
[100] Mohmeyer N, Wang P, Schmidt H W, Zakeeruddin S M, Grtzel M. J. Mater. Chem., 2004, 14(12): 1905-1909
[101] Mohmeyer N, Kuang D, Wang P, Schmidt H W, Zakeeruddin S M, Grtzel M. J. Mater. Chem., 2006, 16(29): 2978-2983
[102] Yu Z. Doctoral Dissevtation of Institute of Physics, Chinese Academy of Sciences, 2010
[103] Huo Z, Dai S, Zhang C, Kong F, Fang X, Guo L, Liu W, Hu L, Pan X, Wang K. J. Phys. Chem. B, 2008, 112(41): 12927-12933
[104] Huo Z, Zhang C, Fang X, Cai M, Dai S, Wang K. J. Power Sources, 2010, 195(13): 4384-4390
[105] Li B, Wang L, Kang B, Wang P, Qiu Y. Sol. Energy Mater. Sol. Cells, 2006, 90(5): 549-573
[106] Wu J, Lan Z, Lin J, Huang M, Hao S, Sato T, Yin S. Adv. Mater., 2007, 19(22): 4006-4011
[107] Yang H, Ileperuma O A, Shimomura M, Murakami K. Sol. Energy Mater. Sol. Cells, 2009, 93(6/7): 1083-1086
[108] Park J H, Nho Y C, Kang M G. J. Photochem. Photobio. A, 2009, 203(2/3): 151-154
[109] Lee S Y, Yoo B, Lim M K, Lee T K, Priya A R S, Kim K J. Langmuir, 2010, 26(9): 6638-6642
[110] Lai Y H, Chiu C W, Chen J G, Wang C C, Lin J J, Lin K F, Ho K C. Sol. Energy Mater. Sol. Cells, 2009, 93(10): 1860-1864
[111] Lee K M, Suryanarayanan V, Ho K C. J. Photochem. Photobio. A, 2009, 207(2/3): 224-230
[112] Gao R, Wang L, Ma B, Zhan C, Qiu Y. Langmuir, 2010, 26(4): 2460-2465
[113] Sharma G D, Suresh P, Mikroyannidis J A. Electrochim. Acta, 2010, 55(7): 2368-2372
[114] Kim J J, Choi H, Lee J W, Kang M S, Song K, Kang S O, Ko J. J. Mater. Chem., 2008, 18(43): 5223-5229
[115] Shi J, Peng S, Pei J, Liang Y, Cheng F, Chen J. ACS Appl. Mater. Interfaces, 2009, 1(4): 944-950
[116] Xue B, Fu Z, Li H, Liu X, Cheng S, Yao J, Li D, Chen L, Meng Q. J. Am. Chem. Soc., 2006, 128(27): 8720-8721
[117] Qin D, Li D, Yu Z, Luo Y, Meng Q. Electrochem. Solid State Lett., 2010, 13(3): B11-B13
[118] Yu Z, Zhang Q, Qin D, Luo Y, Li D, Shen Q, Toyoda T, Meng Q. Electrochem. Commun., 2010, 12: 1776-1779
[119] Papageorgiou N, Athanassov Y, Armand M, Bonhte P, Pettersson H, Azam A, Grtzel M. J. Electrochem. Soc., 1996, 143(10): 3099-3108
[120] Zakeeruddin S M, Grtzel M. Adv. Funct. Mater., 2009, 19(14): 2187-2202
[121] Freitas F S, de Freitas J N, Ito B I, De Paoli M A, Nogueira A F. ACS Appl. Mater. Interfaces, 2009, 1(12): 2870-2877
[122] Singh P K, Bhattacharya B, Nagarale R K, Pandey S P, Kim K W, Rhee H W. Synth. Met., 2010, 160(9/10): 950-954
[123] Singh P K, Kim K W, Rhee H W. Synth. Met., 2009, 159(15/16): 1538-1541
[124] Wang P, Zakeeruddin S M, Comte P, Exnar I, Grtzel M. J. Am. Chem. Soc., 2003, 125(5): 1166-1167
[125] Li D, Wang M, Wu J, Zhang Q, Luo Y, Yu Z, Meng Q, Wu Z. Langmuir, 2009, 25(8): 4808-4814
[126] Yang S C, Yoon H G, Lee S S, Lee H. Mater. Lett., 2009, 63(17): 1465-1467
[127] Lee C P, Lee K M, Chen P Y, Ho K C. Sol. Energy Mater. Sol. Cells, 2009, 93(8): 1411-1416
[128] Bai Y, Cao Y, Zhang J, Wang M, Li R, Wang P, Zakeeruddin S M, Grtzel M. Nature Material, 2008, 7(8): 626-630
[129] Fei Z, Kuang D, Zhao D, Klein C, Ang W H, Zakeeruddin S M, Grtzel M, Dyson P J. Inorg. Chem., 2006, 45(26): 10407-10409
[130] Lee J P, Yoo B, Suresh T, Kang M S, Vital R, Kim K J. Electrochim. Acta, 2009, 54(18): 4365-4370
[131] Jeon S H, Priya A R S, Kang E J, Kim K J. Electrochim. Acta, 2010, 55(20): 5652-5658
[132] Jhong H R, Wong D S H, Wan C C, Wang Y Y, Wei T C. Electrochem. Commun., 2009, 11(1): 209-211
[133] Yamanaka N, Kawano R, Kubo W, Masaki N, Kitamura T, Wada Y, Watanabe M, Yanagida S. J. Phys. Chem. B, 2007, 111(18): 4763-4769
[134] Zhao Y, Zhai J, He J, Chen X, Chen L, Zhang L, Tian Y, Jiang L, Zhu D. Chem. Mater., 2008, 20(19): 6022-6028
[135] Wang M, Xiao X, Zhou X, Li X, Lin Y. Sol. Energy Mater. Sol. Cells, 2007, 91(9): 785-790
[136] Zafer C, Ocakoglu K, Ozsoy C, Icli S. Electrochim. Acta, 2009, 54(24): 5709-5714
[137] Seo D W, Sarker S, Nath N C D, Choi S W, Ahammad A J S, Lee J J, Kim W G. Electrochim. Acta, 2010, 55(4): 1483-1488
[138] Wang P, Wenger B, Humphry-Baker R, Moser J E, Teuscher J, Kantlehner W, Mezger J, Stoyanov E V, Zakeeruddin S M, Grtzel M. J. Am. Chem. Soc., 2005, 127(18): 6850-6856

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[4] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[5] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[6] 杨世迎, 范丹阳, 保晓娟, 傅培瑶. 碳材料修饰零价铝的作用机制[J]. 化学进展, 2022, 34(5): 1203-1217.
[7] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[8] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[9] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[10] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[11] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[12] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[13] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[14] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[15] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
阅读次数
全文


摘要

染料敏化太阳能电池固态电解质