English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 527-532 前一篇   后一篇

• 综述与评论 •

高容量硫/碳复合正极材料

赖超, 李国春, 叶世海, 高学平*   

  1. 南开大学新能源材料化学研究所 天津 300071
  • 收稿日期:2010-09-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:xpgao@nankai.edu.cn E-mail:xpgao@nankai.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2009CB220100)和国家自然科学基金项目(No.51072083)资助

Sulfur-Carbon Composite as Cathode with High Capacity

Lai Chao, Li Guochun, Ye Shihai, Gao Xueping*   

  1. Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China
  • Received:2010-09-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

以锂为负极、硫为正极的锂/硫二次电池,由于其较高的理论能量密度(2 600Wh/kg),而成为最具发展潜力的新型高能化学电源体系。但是,硫正极材料存在的活性物质利用率偏低和循环性能较差等缺点制约了锂/硫电池的快速发展。本文主要综述了基于多孔碳材料负载硫来构筑硫/碳复合材料,进而改善硫电极材料电化学性能的研究进展,多孔碳材料的高比表面积和孔隙结构有利于硫的均匀分散,其微孔和介孔的强吸附力能有效限制多硫化物的溶解与流失。因此,本文重点阐述了多孔碳的孔径因素对硫活性物质的循环性能和电化学容量的影响,并在此基础上,分析了硫/碳复合材料的研究趋势,提出基于微孔和介孔多级孔道结构的碳材料负载将有助于确保活性物质的循环性能和高电化学容量,这将可能成为硫/碳复合材料下一步研发的主要方向。

Lithium-sulfur battery has been receiving more attention due to its high theoretical energy density of 2 600Wh/kg. However, there are still some serious problems for sulfur cathode in organic electrolyte, including the lower utilization and poor cycle performance of sulfur active material, which becomes a big barrier for the research and development of lithium-sulfur battery. This review introduces the recent research process of sulfur-carbon composite cathode based on various porous carbon to support elemental sulfur. The larger surface area and developed porosity of porous carbon are beneficial for the homogeneous dispersion of elemental sulfur, and the strong adsorbability arising from the micropores or mesopores can successfully restrain the solubility and loss of lithium polysulfides, thus leading to the improved electrochemical performance of the composite cathodes. Accordingly, this article mainly illustrates the electrochemical capacity and cycle stability of the composites arising from the various pore size of porous carbon. By comparing, it is suggested that hierarchical porous carbon with highly developed micropores and mesopores is the most promising carrier to loading elemental sulfur, as it can ensure both the excellent electrochemical cycle stability and larger electrochemical capacity of the sulfur cathode.

中图分类号: 

()

[1] Yamin H, Gorenshtein A, Penciner J, Sternberg Y, Peled E. J. Electrochem. Soc ., 1988, 135: 1045-1048
[2] Akridge J R, Mikhaylik Y V, White N. Solid State Ionics , 2004, 175: 243-245
[3] Mikhaylik Y V, Akridge J R. J. Electrochem. Soc ., 2004, 151: 1969-1976
[4] Cheon S E, Ko K S, Cho J H, Kim S W, Chin E Y, Kim H T. J. Electrochem. Soc ., 2003, 150: 796-799
[5] Cheon S E, Ko K S, Cho J H, Kim S W, Chin E Y, Kim H T. J. Electrochem. Soc ., 2003, 150: 800-805
[6] Yuan L X, Feng J K, Ai X P, Cao Y L, Chen S L, Yang H X. Electrochem. Commun ., 2006, 8: 610-614
[7] Yu X G, Xie J Y, Yang J, Wang K. J. Power Sources , 2004, 132: 181-186
[8] Wang J L, Liu L, Ling Z J, Yang J, Wan C R, Jiang C Y. Electrochim. Acta , 2003, 48: 1861-1867
[9] Wang J L, Wang Y W, He X M, Ren J G, Jiang C Y, Wan C R. J. Power Sources , 2004, 138: 271-273
[10] Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M. Electrochem. Commun ., 2003, 5: 701-705
[11] Lee Y M, Choi N S, Park J H, Park J K. J. Power Sources , 2003, 119: 964-972
[12] Feng H Z, Nu L Y N, Yang J. Acta Phys.-Chim. Sin ., 2007, 23: 327-331
[13] Sun M M, Zhang S C, Jiang T, Zhang L, Yu J H. Electrochem. Commun ., 2008, 10: 1819-1822
[14] Wang J, Chen J, Konstantinov K, Zhao L, Ng S H, Wang G X, Guo Z P, Liu H K. Electrochim. Acta , 2006, 51: 4634-4638
[15] Wu F, Wu S X, Chen R J, Chen J Z, Chen S. Electrochem. Solid-State Lett ., 2010, 13: 29-31
[16] Wang J L, Yang J, Wan C R, Du K, Xie J Y, Xu N X. Adv. Funct. Mater ., 2003, 13: 487-492
[17] Qiu L L, Zhang S C, Zhang L, Sun M M, Wang W K. Electrochim. Acta , 2010, 55: 4632-4636
[18] 马萍 (Ma P), 张宝宏 (Zhang B H), 徐宇虹 (Xu Y H), 巩桂英 (Gong G Y). 现代化工(Modern Chemical Industry), 2007, 3:27-30
[19] 韩恩山 (Han E S), 宋芸聘 (Song Y P), 王晨旭 (Wang C X), 陈佳宁 (Chen J N). 现代化工(Modern Chemical Industry), 2009, 1:27-32
[20] Zhang B, Lai C, Zhou Z, Gao X P. Electrochim. Acta , 2009, 54: 3708-3713
[21] Zheng W, Liu Y W, Hu X G, Zhang C F. Electrochim. Acta , 2006, 51: 1330-1335
[22] Yuan L X, Yuan H P, Qiu X P, Chen L Q, Zhu W T. J. Power Sources , 2009, 189: 1141-1146
[23] 杜锐 (Du R), 袁中直 (Yuan Z Z). 电化学(Electrochemistry), 2009, 15:284-287
[24] Wu F, Wu S X, Chen R J, Chen S, Wang G Q. Chin. Chem. Lett ., 2009, 20: 1255-1258
[25] 杜锐 (Du R), 袁中直 (Yuan Z Z), 钟清华(Zhong Q H), 王辉(Wang H), 卓华兰(Zhuo H L). 电源技术(Chinese Journal of Power Source), 2008, 132: 845-847
[26] Wang J L, Yang J, Xie J Y, Xu N X, Li Y. Electrochem. Commun ., 2002, 4: 499-502
[27] Wang J, Chew S Y, Zhao Z W, Ashraf S, Wexler D, Chen J, Ng S H, Chou S L, Liu H K. Carbon , 2008, 46: 229-235
[28] JiX L, Lee K T, Nazar L F. Nat. Mater ., 2009, 8: 500-506
[29] Zhang B, Qin X, Li G R, Gao X P. Energy Environ. Sci ., 2010, 3: 1531-1537
[30] Liang C D, Dudney N J, Howe J Y. Chem. Mater ., 2009, 21: 4724-4730
[31] Lai C, Gao X P, Zhang B, Yan T Y, Zhou Z. J. Phys. Chem. C , 2009, 113: 4712-4716
[32] Gao X P, Yang H X. Energy Environ. Sci ., 2010, 3: 174-189
[33] 苑克国(Yuan K G), 王维坤(Wang W K), 余仲宝(Yu Z B), 王安邦(Wang A B). 电化学 (Electrochemistry), 2009, 15: 202-205
[34] Wang Y, Huang Y Q, Wang W K, Huang C J, Yu Z B, Zhang H. Electrochim. Acta , 2009, 54: 4062-4066
[35] Wang Z, Huang Y Q, Wang W K, Huang C J, Wang Y, Yu Z B, Zhang H. J. Electrochem. Soc ., 2010, 157: A443-A446
[36] 张波(Zhang B). 南开大学博士论文(Doctoral Dissertation of Nankai University), 2010
[37] 苑克国(Yuan K G), 王安邦(Wang A B), 王维坤(Wang W K), 余仲宝(Yu Z B). 电池 (Battery Bimonthly), 2007, 37:168-170
[38] 张文华(Zhang W H), 陈瑶(Chen Y), 艾新平(Ai X P), 曹余良(Cao Y L). 电化学 (Electrochemistry), 2010, 16: 16-19
[39] 杨裕生(Yang Y S).第十五届全国电化学会议(The 15th National Conference of Electrochemistry), 长春(Changchun), 2009

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[3] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[4] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[5] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[6] 张辉, 王珊珊, 余金山. 低对称性二维ReS2及其异质结的化学气相沉积法制备及性质[J]. 化学进展, 2022, 34(6): 1440-1452.
[7] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[8] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[11] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[12] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[15] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
阅读次数
全文


摘要

高容量硫/碳复合正极材料