English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 520-526 前一篇   后一篇

• 综述与评论 •

高性能锂硫电池材料研究进展

梁宵, 温兆银*, 刘宇   

  1. 中国科学院上海硅酸盐研究所 中国科学院能量转换材料重点实验室 上海200050
  • 收稿日期:2010-10-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail: zywen@mail.sic.ac.cn E-mail:zywen@mail.sic.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 50730001, 50973127)、国家重点基础研究发展计划(973)项目(No. 2007CB209700)和上海市科委重点基金项目(No. 08DZ2210900,09PJ1410800)资助

New Development of Key Materials for High-Performance Lithium-Sulfur Batteries

Liang Xiao, Wen Zhaoyin*, Liu Yu   

  1. CAS Key Laboratory of Energy Transforming Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2010-10-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

锂-硫氧化还原对的比能量为2600Wh/Kg,几乎是所有的二次电池氧化还原对中最高的,当锂-硫电池放电产物为Li2S时,电池的比容量可达到1 675mAh/g。近年来,人们在提高锂硫电池的循环可逆性和硫的利用率方面开展了大量的研究工作。本文结合本实验室的工作综述了锂硫二次电池的最新研究进展,对电池的正极、黏结剂、电解质和负极四个方面的研究进行了介绍,对锂硫电池容量衰减的因素进行分析,最后展望了锂硫电池的发展趋势。

The lithium/sulfur redox couple has almost the highest specific-energy density of 2 600Wh/Kg among all the redox couples enabling for chargeable batteries and has a specific capacity of 1 675mAh/g, assuming complete reaction of lithium and sulfur to the product Li2S. Fruitful results were made with the purpose of enhancing the reversibility of the lithium sulfur battery and the utilization of sulfur in the cathode over the past twenty years. In this paper, the effects of the factors on the capacity fading of the lithium sulfur battery are studied. New method and technical development of lithium sulfur battery reported in recent years are reviewed, mainly including the development of the cathode materials, adhesive agents, electrolyte and anode of the battery. The further tendencies of lithium sulfur battery are also represented.

中图分类号: 

()

[1] Marmorstein D, Yu T H, Striebel K A, McLarnon F R, Hou J, Cairns E J. J. Power Sources, 2000, 89: 219-226
[2] Petr N, Klaus M, Santhanam K S V, Otto H. Chem. Rev., 1997, 97: 207-282
[3] Yamin H, Peled E. J. Power Sources, 1983, 9: 281-287
[4] Wang J L, Yang J, Xie J Y, Xu N X. Adv. Mater., 2002, 14: 963-965
[5] . http: //www. sionpower. com
[6] Kumaresan K, Mikhaylik Y, White R. J. Electrochem. Soc., 2008, 155: A576-A582
[7] Mikhaylik Y V, Akridge J R. J. Electrochem. Soc., 2004, 151: A1969-A1976
[8] He X M, Ren J G, Wang L, Pu W H, Jiang C Y, Wan C R. J. Power Sources, 2009, 190: 154-156
[9] Cheon S E, Choi S S, Han J S, Choi Y S, Jung B H, Lim H S. J. Electrochem. Soc., 2004, 151: A2067-A2073
[10] Ji X L, Lee K T, Nazar L F. Nature Mater., 2009, 8: 500-506
[11] Lai C, Gao X P, Zhang B, Yan T Y, Zhou Z. J. Phys. Chem. C, 2009, 113: 4712-4716
[12] Liang C D, Dudney N J, Howe J Y. Chem. Mater. , 2009, 21: 4724-4730
[13] Wang J L, Yang J, Xie J Y, Xu N X, Li Y. Electrochem. Commun ., 2002, 4: 499-502
[14] Zhang B, Lai C, Zhou Z, Gao X P. Electrochim. Acta, 2009, 54: 3708-3713
[15] Zheng W, Liu Y W, Hu X G, Zhang C F. Electrochim. Acta, 2006, 51: 1330-1335
[16] Yuan L X, Yuan H P, Qiu X P, Chen L Q, Zhu W T. J. Power Sources , 2009, 189: 1141-1146
[17] Zhu X J, Wen Z Y, Gu Z H, Lin Z X. J. Power Sources, 2005, 139: 269-273
[18] Wang J, Chen J, Konstantinov K, Zhao L, Ng S H, Wang G X, Guo Z P, Liu H K. Electrochim. Acta, 2006, 51: 4634-4638
[19] Sun M M, Zhang S C, Jiang T, Zhang L, Yu J H. Electrochem. Commun., 2008, 10: 1819-1822
[20] Liang X, Wen Z Y, Liu Y, Wang X Y, Zhang H, Wu M F, Huang L Z. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.07.016
[21] Qiu L L, Zhang S C, Zhang L, Sun M M, Wang W K. Electrochim. Acta, 2010: 55 4632-4636
[22] 马萍(Ma P), 张宝宏(Zhang B H), 徐宇虹(Xu Y H)等. 现代化工(Modern Chemical Industry), 2007, 27 (3): 30-33
[23] 马萍(Ma P), 张宝宏(Zhang B H), 巩桂英(Gong G Y)等. 电子元件与材料(Electronic Components & Materials), 2007, 26 (8): 42-45
[24] Zheng W, Hu X G, Zhang C F. Electrochem. Solid State Lett., 2006, 9: A364-A367
[25] Sun J, Huang Y Q, Wang W K, Yu Z B, Wang A B, Yuan K G. Electrochim. Acta, 2008, 53: 7084-7088
[26] Sun J, Huang Y Q, Wang W K, Yu Z B, Wang A B, Yuan K G. Electrochem. Commun., 2008, 10: 930-933
[27] 伍英蕾(Wu Y L), 杨军(Yang J), 王久林(Wang J L)等. 物理化学学报(Acta Physico-Chimica Sinica), 2010, 26(2): 283-290
[28] Han J S, Choi S S, Park S H, Choi Y S. US 20030143462-A1, 2003
[29] Rauh R D, Shuker F S, Marston J M, Brummer S B. J. Inorg. Nucl. Chem., 1977, 39: 1761-1766
[30] Tobishima S, Yamamoto H, Matsuda M. Electrochem. Acta, 1997, 42: 1019-1029
[31] Peled E, Sternberg Y, Gorenshtein A, Lavi Y. J. Electrochem. Soc., 1989, 136: 1621-1925
[32] Chu M, de Jonghe L C, Uisco S J, Katz B D, Chu M Y, Dejonghe L C, Chu M, Jonghe L C D. US 6030720, 1999
[33] Peled E, Gorenshtein A, Segal M, Sternberg Y. J. Power Sources, 1989, 26: 269-271
[34] Chang D R, Leea S H, Kima S W, Kim H T. J. Power Sources, 2002, 112: 452-460
[35] Choi J W, Kim J K, Cheruvally G, Ahn J H, Ahnb H J, Kimb K W. Electrochim. Acta, 2007, 52: 2075-2082
[36] Wang W K, Wang Y, Huang Y Q, Huang C J, Yu Z B, Zhang H, Wang A B, Yuan K G. J. Appl. Electrochem., 2010, 40: 321-325
[37] Kim S, Jung Y, Park S J. J. Power Sources, 2005, 152: 272-277
[38] Yuan L X, Feng J K, Ai X P, Cao Y L, Chen S L, Yang H. X. Electrochem. Commun., 2006, 8: 610-614
[39] Machida N, Maeda H, Peng H, Shigematsu T. J. Electrochem. Soc., 2002, 149: A688-A693
[40] Hayashi A, Ohtomo T, Mizuno F, Tadanaga K, Tatsumisago M. Electrochem. Commun., 2003, 5: 701-705
[41] Hayashi A, Ohtsubo R, Ohtomo T, Mizuno F, Tatsumisago M. J. Power Sources, 2008, 183: 422-426
[42] Xu X X, Wen Z Y, Yang X L, Zhang J C, Gu Z H. Solid State Ionics, 2006, 177: 2611-2615
[43] Xu X X, Wen Z Y, Wu J G, Yang X L, Solid State Ionics, 2007, 178: 29-34
[44] Xu X X, Wen Z Y, Yang X L, Chen L D. Materials Research Bulletin, 2008, 43: 2334-2341
[45] Lee Y M, Choi N S, Park J H, Park J K, J. Power Sources, 2003, 119/121: 964-972
[46] Hassoun J, Scrosati B. Angew. Chem., 2010, 49: 1-5
[47] Yang Y, McDowell M T, Jackson A, Cha J J, Hong S S, Cui Y. Nano Lett., 2010, 10: 1486-1491

[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王许敏, 李书萍, 何仁杰, 余创, 谢佳, 程时杰. 准固相转化机制硫正极[J]. 化学进展, 2022, 34(4): 909-925.
[4] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[5] 潘福生, 姚远, 孙洁. 锂硫电池中的催化作用[J]. 化学进展, 2021, 33(3): 442-461.
[6] 孙皓, 宋程威, 庞越鹏, 郑时有. 锂硫电池隔膜功能化设计[J]. 化学进展, 2020, 32(9): 1402-1411.
[7] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[8] 赵少飞, 刘鹏, 程高, 余林, 曾华强. 自支撑硫镍基电极材料制备及其赝电容性能[J]. 化学进展, 2020, 32(10): 1582-1591.
[9] 樊潮江, 燕映霖, 陈利萍, 陈世煜, 蔺佳明, 杨蓉. 过渡金属硫化物改性锂硫电池正极材料[J]. 化学进展, 2019, 31(8): 1166-1176.
[10] 杨凯, 章胜男, 韩东梅, 肖敏, 王拴紧*, 孟跃中*. 多功能锂硫电池隔膜[J]. 化学进展, 2018, 30(12): 1942-1959.
[11] 杨蓉, 李兰, 任冰, 陈丹, 陈利萍, 燕映霖. 锂硫电池中的石墨烯掺杂[J]. 化学进展, 2018, 30(11): 1681-1691.
[12] 吴锋, 赵双义, 卢赟, 李健, 苏岳锋, 陈来. 化学结合力载体在锂硫电池中的应用[J]. 化学进展, 2017, 29(6): 593-604.
[13] 邓南平, 马晓敏, 阮艳莉, 王晓清, 康卫民, 程博闻. 锂硫电池系统研究与展望[J]. 化学进展, 2016, 28(9): 1435-1454.
[14] 张松涛, 郑明波, 曹洁明, 庞欢. 锂硫电池用多孔碳/硫复合正极材料的研究[J]. 化学进展, 2016, 28(8): 1148-1155.
[15] 李健, 官亦标, 傅凯, 苏岳锋, 包丽颖, 吴锋. 碳纳米管与石墨烯在储能电池中的应用[J]. 化学进展, 2014, 26(07): 1233-1243.
阅读次数
全文


摘要

高性能锂硫电池材料研究进展