English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 470-476 前一篇   后一篇

• 综述与评论 •

低温制备掺杂氧化锆/氧化铈电解质

刘泽, 雷泽, 宋世栋, 于立安, 韩敏芳*   

  1. 中国矿业大学(北京)化学与环境工程学院 燃料电池联合研究中心 北京 100083
  • 收稿日期:2010-09-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:hanminfang@sina.com E-mail:hanminfang@sina.com
  • 基金资助:

    国家自然科学基金项目(No.50730004)、科技部国际合作项目(No.2009DFA6136)和教育部项目(No.B08010)资助

Doped Zirconia/Ceria Electrolyte Fabricated at Low Temperature

Liu Ze, Lei Ze, Song Shidong, Yu Lian, Han Minfang*   

  1. Union Research Center of Fuel Cells, School of Chemical & Environmental Engineering, China University of Mining & Technology (CUMTB), Beijing 100083, China
  • Received:2010-09-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

固体氧化物燃料电池(SOFC)及其组元的低温制备有利于材料和电池性能的优化,降低制备成本。立方相的全致密氧化钇稳定氧化锆(YSZ)电解质是SOFC中最通用的电解质。传统的烧结工艺需要在1 400—1 450℃才能实现YSZ电解质的致密,而使用纳米粉体和三步烧结工艺可以在1 200—1 300℃得到致密电解质。氧化钪稳定氧化锆(ScSZ)电解质可以使用3nm的粉体在900℃下致密化,氧化钆掺杂的氧化铈可以通过加入烧结助剂在800℃下实现致密化烧结,这些工艺已广泛用于SOFC制备。SOFC的低温制备工艺可有效推进SOFC的产业化。

The manufacturing of solid oxide fuel cell (SOFC) and its main components at low temperature are very important to optimise the performance of material, cell and lower the cost. The cubic full dense yttria stabilized zirconia (YSZ) electrolyte, one of the most popular electrolyte in SOFC, is obtained by three-step sintering process at 1 200—1 300℃ from nano powders, which needs to be dense at 1 400—1 450℃ by traditional sintering process. The scandia stabilized zirconia (ScSZ) and gadolinia doped ceria (GDC) electrolytes are sintered to be full dense respectively at low temperature of 900℃ and 800℃ from 3nm powders of ScSZ and by sintering additives, which, now, are widely used in SOFC process. The low temperature process of SOFC would be benefit to put forward SOFC commercial ization in the market.

中图分类号: 

()

[1] Steele B C H, Heinzel A. Nature, 2001, 414: 345-352
[2] Yamahara K, Jacobson C P, Visco S J, et al. Solid State Ionics, 2005, 176: 275-279
[3] Leng Y J, Chan S H, Khor K A, et al. J. Power Sources, 2003, 117: 26-34
[4] Li J G, Ikegami T, Mori T. Acta Mater., 2004, 52: 2221-2228
[5] Han M F, Tang X L, Yin H Y, et al. J. Power Sources, 2007, 165: 757-763
[6] Mondal P, Klein A, Jaegermann W, et al. Solid State Ionics, 1999, 119: 331-339
[7] Bao W, Chang Q, Meng G. J. Membr. Sci., 2005, 259: 103-109
[8] Han M F, Yin H Y, Miao W T, et al. Solid State Ionics, 2008, 179: 1545-1548
[9] Yamahara K, Jacobson C P, Visco S J, et al. Solid State Ionics, 2005, 176: 451-456
[10] Orui H, Watanabe K, Arakawa M. J. Power Sources, 2002, 112: 90-97
[11] Singhal S C, Kendall K. High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications. Elsevier Ltd., 2003, 103
[12] Han M F, Yang Z B, Liu Z, et al. Key Eng. Mater., 2010, 434/435: 705-709
[13] Han M F, Tang X L, Shao W. J. Wuhan Univ. Tech. Mater. Sci., 2008, 23: 775-778
[14] Han M F, Tang X L, Peng S P. Rare Met., 2006, 25: 209-212
[15] Mizutani Y, Tamura M, Kawai M, et al. Solid State Ionics, 1994, 72: 271-275
[16] Nomura K, Mizutani Y, Kawai M, et al. Solid State Ionics, 2000, 132: 235-239
[17] Lei Z, Zhu Q. Solid State Ionics, 2005, 176: 2791-2797
[18] Van Herle J, Horita T, Kawada T, et al. Solid State Ionics, 1996, 86/88: 1255-1258
[19] Mori M, Suda E, Pacaud B, et al. J. Power Sources, 2006, 157: 688-694
[20] Gil V, Moure C, Duran P, et al. Solid State Ionics, 2007, 178: 359-365
[21] Fagg D P, Kharton V V, Frade J R. J. Electroceram., 2002, 9: 199-207
[22] Jud E, Gauckler L J. J. Electroceram., 2005, 15: 159-166
[23] Kleinlogel C, Gauckler L J. Solid State Ionics, 2000, 135: 567-573
[24] Kleinlogel C, Gauckler L J. Adv. Mater., 2001, 13: 1081-1085
[25] Han M F, Zhou S, Liu Z, et al. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.06.019
[26] Nicholas J D, Jonghe L C D. Solid State Ionics, 2007, 178: 1187-1194
[27] Esposito V, Zunic M, Traversa E. Solid State Ionics, 2009, 180: 1069-1075
[28] Han M F, Liu Z, Zhou S, et al. J. Mater. Sci. Tech., 2010, in press
[29] Harmer M P, Brook R J. Trans. J. Brit. Ceram. Soc., 1981, 80: 147-148
[30] Chen I W, Wang X H. Nat., 2000, 404: 168-171
[31] Markmann J, Tschope A, Birringer R. Acta Mater., 2002, 50: 1433-1440
[32] Chen P L, Chen I W. J. Am. Ceram. Soc., 1996, 79: 3129-3141
[33] Groza J R. Nanostruct. Mater., 1999, 12: 987-992
[34] Johnson J L, German R M. Metall. Mater. Trans. A, 1996, 72: 441-450
[35] Jud E, Huwiler C B, Gauckler L J. J. Am. Ceram. Soc., 2005, 88: 3013-3019
[36] Basu R N, Blass G. J. Eur. Ceram. Soc., 2005, 25: 463-471
[37] Guo X, Waser R. Prog. Mater. Sci., 2006, 51: 151-210
[38] Zhang T S, Ma J, Leng Y J, et al. Solid State Ionics, 2004, 168: 187-195
[39] Lewis G S, Atkinson A, Steele B C H, et al. Solid State Ionics, 2002, 152/153: 567-573
[40] Seo D J, Ryu K O, Park S B, et al. Mater. Res. Bull., 2006, 41: 359-366

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[7] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[8] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[9] 田景晨, 吴功德, 刘雁军, 万杰, 王晓丽, 邓琳. 负载型廉价金属催化剂在低温催化氧化甲醛中的应用[J]. 化学进展, 2021, 33(11): 2069-2084.
[10] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[11] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[12] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[13] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[14] 王晓晗, 刘彩霞, 宋春风, 马德刚, 李振国, 刘庆岭. 金属有机骨架材料在氨低温催化还原氮氧化物反应中的应用[J]. 化学进展, 2020, 32(12): 1917-1929.
[15] 张赛晖, 王悦, 柳开鹏, 王捷. 聚电解质型正渗透汲取液[J]. 化学进展, 2019, 31(7): 969-979.