English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 463-469 前一篇   后一篇

• 综述与评论 •

固体氧化物燃料电池关键材料及电池堆技术

陈建颖, 曾凡蓉, 王绍荣*, 陈玮, 郑学斌   

  1. 中国科学院上海硅酸盐研究所 上海 200050
  • 收稿日期:2010-09-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:srwang@mail.sic.ac.cn E-mail:srwang@mail.sic.ac.cn
  • 基金资助:

    国家高技术发展计划(863)项目(No.2007AA05Z151)和中国科学院创新项目(No.kgcx2-yw-314-1)资助

The Key Materials and the Stacks of SOFCs

Chen Jianying, Zeng Fanrong, Wang Shaorong*, Chen Wei, Zheng Xuebin   

  1. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
  • Received:2010-09-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

本文综述了固体氧化物燃料电池的关键材料——电解质、阴极以及阳极材料,总结了目前的研究现状以及今后的发展趋势,阐明了各种材料的作用与意义。按照不同类别比较了各关键材料的优缺点,以及改进各种关键材料的方法与途径,为提高电池各个组件的性能,从而提高固体氧化物燃料电池的整体性能,即电池堆的性能提供参考。另外,本文对中科院上海硅酸盐研究所在电池堆方面的研究也进行了相应的总结与阐述: 经过系列研究,目前已成功解决了平板堆高温密封难题,实现了电池堆的冷热循环;在双极连接板方面,不仅对气道和密封结构进行了成功的设计,而且攻克了等离子喷涂法制备合金抗高温氧化涂层的技术关键。自主设计开发了1 000W级和5 000W级的SOFC电池堆测试平台,运行的电堆中最大功率超过800W,最长运行时间超过1 400h,衰减率小于3%/1 000h。

In this review, various kinds of key materials of solid oxide fuel cells (SOFCs) are summarized such as the electrolyte, cathode, and anode materials. Their functions, requirements, and development tendency are discussed. Different key materials are compared in order to find the way of improving their performance. In addition, the development of the SOFC stacks in Shanghai Institute of Ceramic is also introduced. The Researchers have solved the problem of high temperature sealing and succeeded in thermal cycling; as for the interconnector, they have successfully designed the structures for gas flowing and sealing, and solved the key problems of plasma spraying for the alloy protecting layer; they have also developed the test devices for the 1 000W and 5 000W SOFC stacks. The highest power obtained was more than 800W; the longest operation time was over 1 400h with the degradation rate being less than 3%/1 000h.

中图分类号: 

()

[1] 王绍荣(Wang S R), 中国科技成果(China Science and Technology Achievements), 2007(06), 57
[2] 宋伟良(Song W L), WTO与能源营销(WTO and Energy Marketing), 湖北: 湖北人民出版社(Hubei: Hubei Peoples Press), 2001 (10) 7-8
[3] Shimada T, Wen C, Taniguchi N. Journal of Power Sources, 2004, 131: 289-292
[4] Fehringer G, Janes S, Wildersohn M. Journal of the European Ceramic Society, 2004, 5: 705-715
[5] Magraso A, Calleja A, Capdevila X. Solid State Ionics, 2004, 166: 359-364
[6] 由宏新(You H X), 陈刚(Chen G), 刘瑞瑞(Liu R R), 周一卉(Zhou Y H), 阿布理提 ·阿布都拉(Abuliti Abudula), 丁信伟(Ding X W), 硅酸盐学报(Journal of the Chinese Ceramic Society), 2009, 37(8): 1306-1310
[7] Masanori H, Takayuki O, Kenji U. Solid State Ionics, 2003, 158: 215-223
[8] Wang Z R, Qian J Q, Cao J D, Wang S R, Wen T L. Journal of Alloys and Compounds, 2007, 437: 264-268
[9] Yang D F, Zhang X F, Nikumb S, Decès-Petit C, Hui R. Maric R, Ghosh D, J. Power Sources, 2006, 164: 182-188
[10] Wang S, Oikawa E, Hashimoto T J. Electrochem. Soc., 2004, 151: E46-E50
[11] Wang S, Inaba H, Tagawa H, Hashimoto T, J. Electrochem. Soc., 1997, 144: 4076-4080
[12] Wang S, Inaba H, Tagawa H, Dokiya M, Hashimoto T, Solid State Ionics, 1998, 107: 73-79
[13] Ishihara T, Matsuda H, Takita Y. J. Am. Chem. Soc., 1994, 116: 3801-3803
[14] Chen J Y, Rebello J, Vashook V, Trots D M, Wang S R, Wen T L, Zosel J, Guth U. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.04.019
[15] Sasaki K, Tamura J, Dokiya M. Solid State Ionics, 2001, 144: 233-240
[16] Doshi R, Richards V L, Carter J D, Wang X P, Krumpelt M. J Electrochem. Soc., 1999, 146(4): 1273- 1278
[17] Ngamou P H T, Bahlawane N. J. Solid State Chem., 2009, 182(4): 849-854
[18] Wang W, Jiang S P. Solid State Ionics, 2006, 177(15/16): 361-369
[19] Ye F, Wang Z C, Weng W, Cheng K, Song C L, Du P Y, Shen G R, Han G R. Thin Solid Films, 2008, 516: 5206-5209
[20] Lee B K, Lee J Y, Jung H Y, Lee J H, Hwang J H. Solid State Ionics, 2008, 179: 955-959
[21] Piao J H, Sun K, Zhang N Q, Xu S. Journal of Power Sources, 2008, 175: 288-295
[22] Li J L, Wang S R, Wang Z G, Liu R Z, Wen T L, Wen Z Y. Journal of Power Sources, 2008, 179: 474-480
[23] Chen J, Liang F L, Liu L N, Jiang S P, Chi B, Pu J, Li J. Journal of Power Sources, 2008, 183: 586-589
[24] Jiang Z Y, Xia C R, Chen F L. Electrochimica Acta, 2010, 55: 3595-3605
[25] Wang S R, Katsuki M, Dokiya M, Hashimoto T, Solid State Ionics, 2003, 159: 71- 78
[26] Minh N Q, Takahashi T. Elsevier Science B.V., Amsterdam: 1995
[27] Yamamoto O, Takeda Y, Kanno R, Noda M. Solid State Ionics, 1987, 22: 241-246
[28] Hjalmarsson P, Sgaard M, Mogensen M. Solid State Ionics, 2008, 179: 1422-1426
[29] Mai A, Haanappel V A C, Tietz F, Vinke I C, Stver D. The Electrochemical Society, (Eds. Singhal S C, Dokiya M) Pennington, NJ, 2003, 525-532
[30] Mai A, Haanappel V A C, Uhlenbruck S, Tietz F, Stver D. Solid State Ionics, 2005, 176: 1341-1350
[31] Shao Z, Haile S M, Nature, 2004, 431: 170-173.
[32] Lee S, Lim Y, Lee E A, Hwang H J, Moonb J W. Journal of Power Sources, 2006, 157: 848-854
[33] Yu H C, Zhao F, Virkar A V. J. Power Sources, 2005, 152: 22-26
[34] Komatsu T, Chiba R, Arai H, Sato K. Journal of Power Sources, 2008, 176: 132-137
[35] Yokoo M, Tabata Y, Yoshida Y, Hayashi K, Nozaki Y, Arai H. Journal of Power Sources, 2008, 178: 59-63
[36] Millar L, Taherparvar H, Filkin N, Slater P, Yeomans J. Solid State Ionics, 2008, 179: 732-739
[37] Mauvy F, Lalanne C, Bassat J M, Grenier J C, Zhao H, Dordor P, Stevens P. Journal of the European Ceramic Society, 2005, 252: 669-2672
[38] Marina Q A, Bagger C, Primdahl S, Mogensen M. Solid State Ionics, 1999, 123: 199-208
[39] Murray E P, Tsai T, Barnett S A. Nature, 2000, 400: 649-651
[40] Ye X F, Huang B, Wang S R, Sun X F, Nie H W, Hu Q, Shi J, Wen T L. Journal of Power Sources, 2007, 164: 203-209
[41] Wang S, Kato T, Nagata S. Proc. 4th Eur. SOFC Forum, July 2000, Luzern, Switzerland, 1: 479-488
[42] Joerger M B, Kleinlogel C M, Perednis D, Gauckler L J. Proc. 4th Eur. SOFC Forum, July 2000, Luzern, Switzerland, 1: 489-496
[43] Zhan Z, Barnett S. Science, 2005, 308: 844-847
[44] Ye X F, Wang S R, Hu Q, Wang Z R, Wen T L, Wen Z Y. Electrochemistry Communications, 2009, 11(4): 823-826
[45] Ye X F, Wang S R, Hu Q, Chen J Y, Wen T L, Wen Z Y. Solid State Ionics, 2009, 180 (2/3): 276-281
[46] Sun X F, Wang S R, Wang Z R, Qian J Q, Wen T L, Huang F Q. Journal of Power Sources, 2009, 187(1): 85-89
[47] Savaniu C D, Irvine J T S. Solid State Ionics, 2010, doi: 10.1016/j.ssi.2010.02.010
[48] Ye X F, Wang S R, Hu Q, Chen J Y, Wen T L, Wen Z Y. Solid State Ionics, 2009, 180: 276-281
[49] Ye X F, Wang S R, Wang Z R, Hu Q, Sun X F, Wen T L, Wen Z Y. Journal of Power Sources, 2008, 183: 512-517
[50] Ye X F, Wang S R, Wang Z R, Xiong L, Sun X F, Wen T L. Journal of Power Sources, 2008, 177: 419-425
[51] Ye X F, Wang S R, Hu Q, Wang Z R, Wen T L, Wen Z Y. Electrochemistry Communications, 2009, 11: 823-826

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[5] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[8] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[9] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[10] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[11] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[12] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[13] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[14] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[15] 倪鑫, 周扬, 谭瑞琴, 况永波. 光电化学水分解中铁酸盐光阴极的制备与改性[J]. 化学进展, 2020, 32(10): 1515-1534.