English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 430-440 前一篇   后一篇

• 综述与评论 •

低温固体氧化物燃料电池

章蕾, 夏长荣*   

  1. 中国科学技术大学材料科学与工程系 中国科学院能量转换材料重点实验室 合肥 230026
  • 收稿日期:2010-10-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:xiacr@ustc.edu.cn E-mail:xiacr@ustc.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.50730002)资助

Low Temperature Solid Oxide Fuel Cells

Zhang Lei, Xia Changrong*   

  1. CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science & Engineering, University of Science & Technology of China, Hefei 230026, China
  • Received:2010-10-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

固体氧化物燃料电池作为新型的能源转换装置,具有高效、清洁、稳定性高、灵活多样等特点,有着良好的发展前景。它的中低温化对于商业应用具有十分重要的意义,现阶段的研究重点主要集中于将操作温度从传统的800—1 000℃降低到600℃甚至以下。本文集中介绍了应用于600℃以下的中低温固体氧化物燃料电池,分别从低温电解质、阴极和阳极等方面进行了比较和讨论。电解质方面可以采用在低温下具有较高氧离子电导率的氧化铈基电解质,降低电解质的有效厚度,加入电子阻隔层的双层电解质结构来阻挡电子传导从而提高开路电压的方法来实现其中低温化。电极方面不仅可以通过新材料的开发来提高在低温下的催化活性,同时还可以利用离子浸渍法对电极微结构进行优化,增加三相界面长度和反应活性位,在实现电极电阻减小的同时改善阳极的燃料适应性,从而可使用更多种类的碳氢化合物作为燃料而不产生积炭现象。此外,文章还对近年来兴起的用于低温的单室固体氧化物燃料电池和微型固体氧化物燃料电池进行了介绍,这一系列新型固体氧化物燃料电池在其中低温化进程中也具有重要的影响。

Solid oxide fuel cells (SOFCs) are an novel energy conversion device, which has been extensively used for its high energy efficiency, high stability, fuel flexibility, and low pollution emission. Lowering down its operating temperature is important for commercialization. More attentions are therefore paid on how to decrease the operating temperature from traditional 800—1 000℃ to 600℃ or below. The paper summarizes the development of the electrolytes, cathodes, and anodes for SOFCs operated below 600℃. Choosing alternative ceria-based oxides with high ionic conductivity at low temperature, decreasing the electrolyte thickness, and constructing bilayered electrolytes with additional electronic blocking layer to enhance the open circuit voltage are all effective approaches for the improving electrolytes. While for the electrodes, novel materials are developed to increase the catalytic activity at low temperature. Moreover, ion-impregnation method is applied to optimize the microstructure of electrodes. Thus the triple phase boundary and active site has been enhanced, resulting in decreased electrode resistance and direct utilization of hydrocarbon without carbon deposition. In addition, new types of low temperature SOFCs such as single chamber SOFCs and micro SOFCs are also presented, which might have significant impact on the development of low temperature SOFCs.

中图分类号: 

()

[1] Steele B C H, Heinzel A. Nature, 2001, 414(15): 345-352
[2] Ormerod R M. Chem. Soc. Rev., 2003, 32: 17-28
[3] Stambouli A B, Traversa E. Renew. Sust. Energ. Rev., 2002, 6: 433-455
[4] 毛宗强(Mao Z Q), 黄建兵(Huang J B), 王诚(Wang C), 刘志祥(Liu Z X). 电源技术(Chinese Journal of Power Sources), 2008, 32(2): 75-79
[5] Tietz F, Buchkremer H P, Stover D. Solid State Ionics, 2002, 152/153: 373-381
[6] Ralph J M, Schoeler A C, Krumpelt M. J. Mater. Sci., 2001, 36: 1161-1172
[7] 于兴文(Yu X W), 黄学杰(Huang X J), 陈立泉(Chen L Q). 电池(Battery Bimonthly). 2002, 32(2): 110-112
[8] Tsipis E V, Kharton V V. J. Solid State Electrochem., 2008, 12: 1039-1060
[9] Arachi Y, Sakai H, Yamamoto O, Takeda Y, Imanishai N. Solid State Ionics, 1999, 121: 133-139
[10] Eguchi K, Setoguchi T, Inoue T, Arai H. Solid State Ionics, 1992, 52: 165-172
[11] Wincewicz K C, Cooper J S. J. Power Sources, 2005, 140: 280-296
[12] Mogensen M, Sammes N M, Tompsett G A. Solid State Ionics, 2000, 129: 63-94
[13] Yahiro H, Eguchi K, Arai H. Solid State Ionics, 1989, 36: 71-75
[14] Yahiro H, Ohuchi T, Eguchi K, Arai H. J. Mater. Sci., 1988, 23: 1036-1041
[15] Inaba H, Tagawa H. Solid State Ionics, 1996, 83: 1-16
[16] Zha S, Xia C, Meng G. J. Power Sources, 2003, 115: 44-48
[17] Huang W, Shuk P, Greenblatt M. Chem. Mater., 1997, 9: 2240-2245
[18] Yahiro H, Eguchi Y, Eguchi K, Arai H. J. Appl. Electrochem., 1988, 18: 527-531
[19] Huang W, Shuk P, Greenblatt M. Solid State Ionics, 1997, 100: 23-27
[20] Peng R, Xia C, Fu Q, Meng G, Peng D. Mater. Lett., 2002, 56: 1043-1047
[21] Li H, Xia C, Zhu M, Zhou Z, Wei X, Meng G. Ceram. Int., 2007, 33: 201-205
[22] Li H, Xia C, Zhu M, Zhou Z, Meng G. Acta Mater., 2006, 54: 721-727
[23] Ding D, Liu B, Zhu Z, Zhou S, Xia C. Solid State Ionics, 2008, 179: 896-899
[24] Ding D, Liu B, Gong M, Liu X, Xia C. Electrochim. Acta, 2010, 55: 4529-4535
[25] Tian R, Zhao F, Chen F, Xia C. Solid State Ionics, in Press
[26] Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler L J. Solid State Ionics, 2000, 131: 79-96
[27] Beckel D, Hütter A B, Harvey A, Infortuna A, Muecke U P, Prestat M, Rupp J L M, Gauckler L J. J. Power Sources, 2007, 173: 325-345
[28] Xia C, Liu M. Solid State Ionics, 2001, 144: 249-255
[29] Peng R, Xia C, Liu X, Peng D, Meng G. Solid State Ionics, 2002, 152/153: 561-565
[30] Ai N, Lü Z, Chen K, Huang X, Liu Y, Wang R, Su W. J. Membr. Sci., 2006, 286: 255-259
[31] Liu M, Peng R, Dong D, Gao J, Liu X, Meng G. J. Power Sources, 2008, 185: 188-192
[32] Zhao F, Wang Z, Liu M, Zhang L, Xia C, Chen F. J. Power Sources, 2008, 185: 13-18
[33] Wang S, Kobayashi T, Dokiya M, Hashimotob T. J. Electrochem. Soc., 2000, 147(10): 3606-3609
[34] Badwal S P S, Ciacchi F T, Drennan J. Solid State Ionics, 1999, 121: 253-262
[35] Atkinson A. Solid State Ionics, 1997, 95: 249-258
[36] Matsui T, Inaba M, Mineshige A, Ogumi Z. Solid State Ionics, 2005, 176: 647-654
[37] Riess I. Solid State Ionics, 1992, 52: 127-134
[38] Riess I. J. Electrochem. Soc., 1981, 128(10): 2077-2081
[39] Doshi R, Richards V L, Carter J D, Wang X, Krumpelt M. J. Electrochem. Soc., 1999, 146(4): 1273-1278
[40] Ding C, Lin H, Sato K, Amezawa K, Kawada T, Mizusaki J, Hashida T. J. Power Sources, 2010, 195: 5487-5492
[41] Barnett S A. Energy, 1990, 15(1): 1-9
[42] Tsai T, Perry E, Barnett S. J. Electrochem. Soc., 1997, 144(5): L130-L132
[43] Wachsman E D, Jayaweera P, Jiang N, Lowe D M, Pound B G. J. Electrochem. Soc., 1997, 144(1): 233-236
[44] Zhang L, Xia C, Zhao F, Chen F. Mater. Res. Bull., 2010, 45: 603-608
[45] Ahn J S, Pergolesi D, Camaratta M A, Yoon H, Lee B W, Lee K T, Jung D W, Traversa E, Wachsman E D. Eelectrochem. Commun., 2009, 11: 1504-1507
[46] Adler S B. Chem. Rev., 2004, 104: 4791-4843
[47] 卢俊彪(Lu J B), 张中太(Zhang Z T), 唐子龙(Tang Z L). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2005, 34(8): 1177-1180
[48] 高展(Gao Z), 张萍(Zhang P), 高瑞峰(Gao R F), 黄建兵(Huang J B), 毛宗强(Mao Z Q). 化工新型材料(New Chemical Materials), 2007, 35(2): 6-8
[49] Ullmann H, Trofimenko N. Solid State Ionics, 1999, 119: 1-8
[50] Zhao F, Wang X, Wang Z, Peng R, Xia C. Solid State Ionics, 2008, 179: 1450-1453
[51] Tarancón A, Skinner S J, Chater R J, Ramírez F H, Kilner J A. J. Mater. Chem., 2007, 17: 3175-3181
[52] Xia C, Liu M. Adv. Mater., 2002, 14(7): 521-523
[53] Petric A, Huang P, Tietz F. Solid State Ionics, 2000, 135: 719-725
[54] Wei B, Lü Z, Li S, Liu Y, Liu K, Su W. Electrochem. Solid-State Lett., 2005, 8(8): A428-A431
[55] Jiang S P. J. Mater. Sci., 2008, 43: 6799-6833
[56] Murray E P, Sever M J, Barnett S A. Solid State Ionics, 2002, 148: 27-34
[57] Dusastre V, Kilner J A. Solid State Ionics, 1999, 126: 163-174
[58] Zhao F, Peng R, Xia C. Mater. Res. Bull., 2008, 43: 370-376
[59] Jiang S P. Mater Sci. Eng. A, 2006, 418: 199-210
[60] Sholklapper T Z, Kurokawa H, Jacobson C P, Visco S J, Jonghe L C D. Nano Lett., 2007, 7(7): 2136-2141
[61] Zhang Y, Xia C. J. Power Sources, 2010, 195: 6611-6618
[62] Zhang L, Zhao F, Peng R, Xia C. Solid State Ionics, 2008, 179: 1553-1556
[63] 彭苏萍(Peng S P), 韩敏芳(Han M F). 自然杂志(Chinese Journal of Nature), 2009, 31(4): 187-192
[64] Mclntosh S, Gorte R J. Chem. Rev., 2004, 104: 4845-4865
[65] Jiang S P, Chan S H. J. Mater. Sci., 2004, 39: 4405-4439
[66] Simwonis D, Tietz F, Stover D. Solid State Ionics, 2000, 132: 241-251
[67] Eguchi K, Setoguchi T, Okamoto K, Arai H. in: (Eds.), Proc. International Fuel Cell Conf., Mukuhari: 1992. 373
[68] 丁冬(Ding D). 中国科学技术大学博士论文(Doctoral Dissertation of University of Science and Technology of China), 2009
[69] Park S, Vohs J M, Gorte R J. Nature, 2000, 404(16): 265-267
[70] Gorte R J, Park S, Vohs J M, Wang C. Adv. Mater., 2000, 12(19): 1465-1469
[71] Xie Z, Xia C, Zhang M, Zhu W, Wang H. J. Power Sources, 2006, 161: 1056-1061
[72] Zhan Z, Barnett S A. Science, 2005, 308: 844-847
[73] Sun C, Xie Z, Xia C, Li H, Chen L. Eelectrochem. Commun., 2006, 8: 833-838
[74] Zhu W, Xia C, Fan J, Peng R, Meng G. J. Power Sources, 2006, 160: 897-902
[75] Ding D, Liu Z, Li L, Xia C. Eelectrochem. Commun., 2008, 10: 1295-1298
[76] Zhu W, Ding D, Xia C. Electrochem. Solid-State Lett., 2008, 11(6): B83-B86
[77] Ding D, Zhu W, Gao J, Xia C. J. Power Sources, 2008, 179: 177-185
[78] Ding D, Li L, Feng K, Liu Z, Xia C. J. Power Sources, 2009, 187: 400-402
[79] He B, Ding D, Xia C. J. Power Sources, 2010, 195: 1359-1364
[80] 王康(Wang K), 邵宗平(Shao Z W). 化学进展(Progress in Chemistry), 2007, 19(2/3): 267-275
[81] Hao Y, Shao Z P, Mederos J, Lai W, Goodwin D G, Haile S M. Solid State Ionics, 2006, 177: 2013-2021
[82] Yano M, Tomita A, Sano M, Hibino T. Solid State Ionics, 2007, 177: 3351-3359
[83] Suzuki T, Jasinski P, Petrovsky V, Anderson H U, Dogan F. J. Electrochem. Soc., 2005, 152(3): A527-A531
[84] Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M. Science, 2000, 288(16): 2031-2033
[85] Hibino T, Hashimoto A, Inoue T, Tokuno J, Yoshida S, Sano M. J. Electrochem. Soc., 2001, 148(6): A544-A549
[86] Hibino T, Hashimoto A, Yano M, Suzuki M, Yoshida S, Sano M. J. Electrochem. Soc., 2002, 149(2): A133-A136
[87] Suzuki T, Jasinski P, Anderson H U, Dogan F. J. Electrochem. Soc., 2004, 151(10): A1678-A1682
[88] Shao Z, Haile S M. Nature, 2004, 431(9): 170-173
[89] Shao Z, Haile S M, Ahn J, Ronney P D, Zhan Z, Barnett S A. Nature, 2005, 435(9): 795-798
[90] Yano M, Kawai T, Okamoto K, Nagao M, Sano M, Tomita A, Hibino T. J. Electrochem. Soc., 2007, 154(8): B865-B870
[91] Shao Z, Kwak C, Haile S M. Solid State Ionics, 2004, 175: 39-46
[92] Tomita A, Hirabayashi D, Hibino T, Nagao M, Sano M. Electrochem. Solid-State Lett., 2005, 8(1): A63-A65
[93] Buergler B E, Siegrist M E, Gauckler L J. Solid State Ionics, 2005, 176: 1717-1722
[94] Beckel D, Hütter A B, Harvey A, Infortuna A, Muecke U P, Prestat M, Rupp J L M, Gauckler L J. Solid State Ionics, 2007, 173: 325-345
[95] Evans A, Hütter A B, Rupp J L M, Gauckler L J. J. Power Sources, 2009, 194: 119-129
[96] Muecke U P, Beckel D, Bernard A, Hütter A B, Graf S, Infortuna A, Müller P, Rupp J L M, Schneider J, Gauckler L J. Adv. Funct. Mater., 2008, 18: 3158-3168
[97] Huang H, Nakamura M, Su P, Fasching R. J. Electrochem. Soc., 2007, 154(1): B20-B24
[98] Kang S, Su P C, Park Y I, Saito Y, Prinz F B. J. Electrochem. Soc., 2006, 153(3): A554-A559
[99] Shim J H, Chao C C, Huang H, Prinz F B. Chem. Mater., 2007, 19: 3850-3854
[100] Joo J H, Choi G M. J. Power Sources, 2008, 182: 589-593
[101] Su P C, Chao C C, Shim J H, Fasching R, Prinz F B. Nano Lett., 2008, 8(8): 2289-2292

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[5] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[8] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[9] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[10] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[11] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[12] 李栋, 郑育英, 南皓雄, 方岩雄, 刘全兵, 张强. 高安全、高比能固态锂硫电池电解质[J]. 化学进展, 2020, 32(7): 1003-1014.
[13] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[14] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[15] 倪鑫, 周扬, 谭瑞琴, 况永波. 光电化学水分解中铁酸盐光阴极的制备与改性[J]. 化学进展, 2020, 32(10): 1515-1534.
阅读次数
全文


摘要

低温固体氧化物燃料电池