English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 418-429 前一篇   后一篇

• 综述与评论 •

中低温固体氧化物燃料电池阴极材料

邵宗平*   

  1. 南京工业大学化学化工学院 材料化学工程国家重点实验室 南京 210009
  • 收稿日期:2010-10-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:shaozp@njut.edu.cn E-mail:shaozp@njut.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2007CB209704)、 教育部新世纪优秀人才计划 (2008)、 江苏省六大人才高峰项目(No.200803)和国家杰出青年基金项目(No.51025209)资助

Cathode Materials for Solid Oxide Fuel Cells Towards Operating at Intermediate-to-Low Temperature Range

Shao Zongping*   

  1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
  • Received:2010-10-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

固体氧化物燃料电池 (SOFCs) 作为一种高效的能量转化装置,其成功应用将有效地节约能源和降低能源利用过程中环境污染物的排放,对人类社会的可持续发展意义重大。低温化可加快SOFCs商品化的步伐,而其关键在于开发高性能的阴极材料。本论文对近年来在中低温SOFCs阴极材料方面的研究进展进行了较全面的综述,其中包括Ba0.5Sr0.5Co0.8Fe0.2O3-δ系列材料、具有两维氧离子传导特性的LnBaCo2O5+δ双钙钛矿型材料及其他的钴基钙钛矿型材料、非钴基阴极和贵金属修饰阴极,以及浸渍法制备的纳米修饰阴极等,指出了各种材料的优缺点及将来的发展趋势,重点介绍了本课题组在最近5年来在此方面所做的努力。质子导电型SOFCs最近几年来受到了人们的广泛关注,由于其阴极的氧还原行为与常规以氧离子导体为电解质的SOFCs有所不同,所以我们对其进行了单独的综述。最后,提出了SOFCs阴极材料的发展趋势。

Solid oxide fuel cells (SOFCs) are a type of electrochemical energy conversion devices with high efficiencies and low emissions. The practical application of SOFCs technology would have a great environmental benignity and be beneficial for a sustainable development of the world. The decrease of operation temperature can accelerate the commercialization of SOFCs technology, the key is the development of high performance of cathodes operated at low temperature. In this paper, we mainly have a comprehensive introduction on the progress in developing of novel cathodes for reduced temperature SOFCs, including perovskite-type Ba0.5Sr0.5Co0.8Fe0.2O3-δ, double perovskite-type LnBaCo2O5+δ, other perovskite-type cobalt-based mixed conducting electrodes, non-cobalt-related mixed conducting oxide electrodes, precious metal modified oxide electrodes and nano-structured composite electrodes prepared by infiltration, and specific cathodes for proton-conducting SOFCs. More attentions are paid to the development in our lab within the last five years. The development trend of cathode in SOFCs is proposed.

中图分类号: 

()

[1] Dollard W J. J. Power Sources, 1992, 37: 133-139
[2] 韩敏芳(Han M F), 彭苏萍(Peng S P). 固体氧化物燃料电池材料及制备(Solid Oxide Fuel Cell Materials and Fabrication). 北京: 科学出版社(Beijing: Science Press), 2004. 7-14
[3] Minh N Q. J. Am. Ceram. Soc., 1993, 76: 563-588
[4] Haile S M. Acta Mater., 2003, 51: 5981-6000
[5] Steele B C H, Heinzel A. Nature, 2001, 414: 345-352
[6] Singhal S C. Solid State Ionics, 2000, 135: 305-313
[7] Yamamoto O. Electrochim. Acta, 2000, 45: 2423-2435
[8] Badwal S P S, Foger K. Ceram. Int., 1996, 22: 257-265
[9] Holtappels P, Vogt U, Graule T. Adv. Eng. Mater., 2005, 7: 292-302
[10] Alcaide F, Cabot P L, Brillas E. J. Power Sources, 2006, 153: 47-60
[11] Adler S B. Chem. Rev., 2004, 104: 4791-4843
[12] Fleig J. Annu. Rev. Mater. Res., 2003, 33: 361-382
[13] Goodenough J B. Annu. Rev. Mater. Res., 2003, 33: 91-128
[14] Brandon N P, Skinner S, Steele B C H. Annu. Rev. Mater. Res., 2003, 33: 183-213
[15] Perednis D, Gauckler L J. Solid State Ionics, 2004, 166: 229-239
[16] Huang H, Nakamura M, Su P C, Fasching R, Saito Y, Prinz F B. J. Electrochem. Soc., 2007, 154: B20-B24
[17] Leng Y J, Chan S H, Jiang S P, Khor K A. Solid State Ionics, 2004, 170: 9-15
[18] Leng Y J, Chan S H, Khor K A, Jiang S P. Int. J. Hydrogen Energy, 2004, 29: 1025-1033
[19] Sammes N M, Du Y, Bove R. J. Power Sources, 2005, 145: 428-434
[20] Kim S D, Hyun S H, Moon J, Kim J H, Song R K. J. Power Sources, 2005, 139: 67-72
[21] Shao Z P, Haile S M. Nature, 2004, 431: 170-173
[22] Kim G, Wang S, Jacobson A J, Chen C L, Reimus L, Brodersen P, Mims C A. Appl. Phys. Lett., 2006, 88: art. no. 024103
[23] Kim J H, Manthiram A. J. Electrochem. Soc., 2008, 155: B385-B390
[24] Kim J H, Prado F, Manthiram A. J. Electrochem. Soc., 2008, 155: B1023-B1028
[25] Shao Z P, Yang W, Cong Y, Dong H, Tong J H, Xiong G X. J. Mem. Sci., 2000, 172: 177-188
[26] Shao Z P, Dong H, Xiong G X, Gong Y, Yang W S. J. Mem. Sci., 2001, 183: 181-192
[27] Shao Z P, Xiong G X, Dong H, Yang W S, Lin L W. Sep. Purif. Technol., 2001, 25: 97-116
[28] Shao Z P, Xiong G X, Tong J H, Dong H, Yang W S. Sep. Purif. Technol., 2001, 25: 419-429
[29] Zeng P Y, Chen Z H, Zhou W, Gu H X, Shao Z P, Liu S M. J. Mem. Sci., 2007, 291: 148-156
[30] Ai N, Jiang S P, Lu Z, Chen K F, Su W H. J. Electrochem. Soc., 2010, 157: B1033-B1039
[31] Magnone E. J. Fuel Cell Sci. Tech., 2010, 7: art. no. 064001
[32] Leo A, Liu S M, da Costa J C D. Int. J. Greenhouse Gas Control, 2009, 3: 357-367
[33] Baumann S, Schulze-Kuppers F, Roitsch S, Betz M, Zwick M, Pfaff E M, Meulenberg W A, Mayer J, Stver D. J. Mem. Sci., 2010, 359: 102-109
[34] Baumann F S, Fleig J, Habermeier H U, Maier J. Solid State Ionics, 2006, 177: 3187-3191
[35] Bucher E, Egger A, Ried P, Sitte W, Holtappels P. Solid State Ionics, 2008, 179: 1032-1035
[36] Lai W, Haile S M. Phys. Chem. Chem. Phys., 2008, 10: 865-883
[37] Lee S, Lim Y, Lee E A, Hwang H J, Moon J W. J. Power Sources, 2006, 157: 848-854
[38] Wang L, Merkle R, Maier J. J. Electrochem. Soc., 2010, 157: B1802-B1808
[39] Liu Q L, Khor K A, Chan S H. J. Power Sources, 2006, 161: 123-128
[40] McIntosh S, Vente J F, Haije W G, Blank D H A, Bouwmeester H J M. Solid State Ionics, 2006, 177: 1737-1742
[41] Ovenstone J, Jung J I, White J S, Edwards D D, Misture S T. J. Solid State Chem., 2008, 181: 576-586
[42] Pena-Martinez J, Marrero-Lopez D, Ruiz-Morales J C, Buergler B E, Núez P, Gauckler L J. Solid State Ionics, 2006, 177: 2143-2147
[43] Pena-Martinez J, Marrero-Lopez D, Ruiz-Morales J C, Buergler B E, Núez P, Gauckler L J. J. Power Sources, 2006, 159: 914-921
[44] Wang L, Merkle R, Maier J, Acartürk T, Starke U. Appl. Phys. Lett., 2009, 94: art. no. 071908
[45] Chen Z H, Ran R, Zhou W, Shao Z P, Liu S M. Electrochim. Acta, 2007, 52: 7343-7351
[46] Martynczuk J, Arnold M, Wang H, Caro J, Feldhoff A. Adv. Mater., 2007, 19: 2134-2140
[47] Pena-Martinez J, Marrero-Lopez D, Perez-Coll D, Ruiz-Morales J C, Núez P. Electrochim. Acta, 2007, 52: 2950-2958
[48] McIntosh S, Vente J F, Haije W G, Blank D H A, Bouwmeester H J M. Chem. Mater., 2006, 18: 2187-2193
[49] Jung J I, Misture S T, Edwards D D. J. Electroceramics, 2010, 24: 261-269
[50] Yan A Y, Bin L, Dong Y L, Tian Z J, Wang D Z, Cheng M J. Appl.Catal. B, 2008, 80: 24-31
[51] Yang Z, Harvey A S, Gauckler L J. Scr. Mater., 2009, 61: 1083-1086
[52] Duan Z S, Yang M, Yan A, Hou Z F, Dong Y L, Chong Y, Cheng M J, Yang W S. J. Power Sources, 2006, 160: 57-64
[53] Lim Y H, Lee J, Yoon J S, Kim C E, Hwang H J. J. Power Sources, 2007, 171: 79-85
[54] Lin Y, Ran R, Zheng Y, Shao Z P, Jin W Q, Xu N P, Ahn J. J. Power Sources, 2008, 180: 15-22
[55] Li S, Lü Z, Ai N, Chen K F, Su W H. J. Power Sources, 2007, 165: 97-101
[56] Wang K, Ran R, Zhou W, Gu H X, Shao Z P, Ahn J. J. Power Sources, 2008, 179: 60-68
[57] Zhang C M, Zheng Y, Ran R, Shao Z P, Jin W Q, Xu N P, Ahn J. J. Power Sources, 2008, 179: 640-648
[58] Zhou W, Shao Z P, Ran R, Zeng P Y, Gu H X, Jin W Q, Xu N P. J. Power Sources, 2007, 168: 330-337
[59] Zhou W, Shao Z P, Ran R, Chen Z H, Zeng P Y, Gu H X, Jin W Q, Xu N P. Electrochim. Acta, 2007, 52: 6297-6303
[60] Kostogloudis G C, Ftikos C. Solid State Ionics, 1999, 126: 143-151
[61] Mineshige A, Izutsu J, Nakamura M, Nigaki K, Abe J, Kobune M, Fujii S, Yazawa T. Solid State Ionics, 2005, 176: 1145-1149
[62] Hansen K K, Hansen K V. Solid State Ionics, 2007, 178:1379-1384
[63] Doshi R, Richard V L J, Carter D, Wang X P, Michael K. J. Electrochem. Soc., 1999, 146: 1273-1278
[64] Hatchwell C, Bonanos N, Mogensen M. Solid State Ionics, 2004, 167: 349-354
[65] Sevenson J, Armstrong T, Pederson L, Li J, Lewinsohn C A, Baskaran S. Solid State Ionics, 1998, 113/115: 571-583
[66] Zhou W, Ran R, Shao Z P, Jin W Q, Xu N P. J. Power Sources, 2008, 182: 24-31
[67] Ge L, Zhou W, Ran R, Liu S M, Shao Z P, Jin W Q, Xu N P. J. Mem. Sci., 2007, 306: 318-328
[68] Ge L, Ran R, Zhang K, Liu S M, Shao Z P. J. Mem. Sci., 2008, 318: 182-190
[69] Zhou W, Ran R, Shao Z P, Zhuang W, Jia J, Gu H X, Jin W Q, Xu N P. Acta Mater., 2008, 56: 2687-2698
[70] Zhou W, Ran R, Shao Z P. J. Power Sources, 2009, 192: 231-246
[71] Jacobson A J. Chem. Mater., 2010, 22: 660-674
[72] Taskin A A, Lavrov A N, Ando Y. Appl. Phys. Lett., 2005, 86: art. no. 091910
[73] Zhang K, Ge L, Ran R, Shao Z P, Liu S M. Acta Mater., 2008, 56: 4876-4889
[74] Chen D J, Ran R, Shao Z P. J. Power Sources, 2010, 195: 4667-4675
[75] Zhu C J, Liu X M, Yi C S, Pei L, Wang D J, Yan D T, Yao K G, Lü T Q, Su W H. J. Power Sources, 2010, 195: 3504-3507
[76] Zhou Q J, Wang F, Shen Y, He T M. J. Power Sources, 2010, 195: 2174-2181
[77] Chen D J, Ran R, Shao Z P. J. Power Sources, 2010, 195: 7187-7195
[78] Tarancon A, Pena-Martinez J, Marrero-Lopez D, Morata A, Ruiz-Morales J C, Núez P. Solid State Ionics, 2008, 179: 2372-2378
[79] Zhou Q J, He T M, He Q, Ji Y. Electrochem. Commun., 2009, 11: 80-83
[80] Kim J H, Cassidy M, Irvine J T S, Bae J. J. Electrochem. Soc., 2009, 156: B682-B689
[81] Ralph J M, Schoeler A C, Krumpelt M. J. Mater. Sci., 2001, 36: 1161-1172
[82] Orera A, Slater P R. Chem. Mater., 2010, 22: 675-690
[83] Kim J H, Manthiram A. Electrochim. Acta, 2009, 54: 7551-7557
[84] Zhao F, Wang S W, Brinkman K, Chen F L. J. Power Sources, 2010, 195: 5468-5473
[85] Zhou Q J, Zhang Y C, Shen Y, He T M. J. Electrochem. Soc., 2010, 157: B628-B632
[86] Wei B, Lü Z, Jia D C, Huang X Q, Zhang Y H, Su W H. Int. J. Hydrogen Energy, 2010, 35: 3775-3782
[87] Nian Q, Zhao L, He B B, Lin B, Peng R R, Meng G Y, Liu X Q. J. Alloys Compd., 2010, 492: 291-294
[88] Kim J H, Cassidy M, Irvine J T S, Bae J. Chem. Mater., 2010, 22: 883-892
[89] Ding H P, Xue X J. J. Power Sources, 2010, 195: 4139-4142
[90] Skinner S J. Int. J. Inorg. Mater., 2001, 3: 113-121
[91] Rossignol C, Ralph J M, Bae J M, Vaughey J T. Solid State Ionics, 2004, 175: 59-61
[92] James M, Cassidy D, Goossens D J, Withers R L. J. Solid State Chem., 2004, 177: 1886-1895
[93] Lee T H, Yang Y L, Jacobson A J, Abeles B, Milner S. Solid State Ionics, 1997, 100: 87-94
[94] Sunarso J, Motuzas J, Liu S M, da Costa J C D. J. Membr. Sci. 2010, 361: 120-125
[95] Nagai T, Ito W, Sakon T. Solid State Ionics, 2007, 177: 3433-3444
[96] Zhou W, Shao Z P, Ran R, Cai R. Electrochem. Commun., 2008, 10: 1647-1651
[97] Zhou W, Shao Z P, Ran R,Jin W Q, Xu N P. Chem. Commun., 2008, 44: 5791-5793
[98] Zhang K, Ran R, Shao Z P, Zhu Z H, Jin Y G, Liu S M. Ceram. Int., 2010, 36: 635-641
[99] Zeng P Y, Ran R, Chen Z H, Zhou W, Gu H X, Shao Z P, Liu S M. J. Alloys Compd., 2008, 455: 465-470
[100] Zeng P Y, Shao Z P, Liu S M, Xu Z P. Sep. Purif. Technol., 2009, 67: 304-311
[101] Zhou W, Jin W Q, Zhu Z H, Shao Z P. Int. J. Hydrogen Energy, 2010, 35: 1356-1366
[102] Huang C, Chen D J, Lin Y, Ran R, Shao Z P. J. Power Sources, 2010, 195: 5176-5184
[103] Lin Y, Ran R, Chen D J, Shao Z P. J. Power Sources, 2010, 195: 4700-4703
[104] Tarancon A, Burriel M, Santiso J, Skinner S J, Kilner J A. J. Mater. Chem., 2010, 20: 3799-3813
[105] Yaremchenko A A, Kharton V V, Patrakeev M V, Frade J. J. Mater. Chem., 2003, 13: 1136-1144
[106] Zhao F, Wang X F, Wang Z Y, Peng R R, Xia C R. Solid State Ionics, 2008, 179: 1450-1453
[107] Aguadero A, Alonso J A, Esudero M J, Daza L. Solid State Ionics, 2008, 179: 393-400
[108] Tsipis E V, Naumovich E N, Shaula A L, Patrakeev M V, Waerenborgh J C, Kharton V V. Solid State Ionics, 2007, 179: 57-60
[109] Mauvy F, Lalanne C, Bassat J M, Grenier J C, Zhao H, Huo L, Stevens P. J. Electrochem. Soc., 2006, 153: A1547-A1553
[110] Simner S P, Bonnett J F, Canfield N L, Meinhardt K D, Sprenkle V L, Stevenson J W. Electrochem. Solid-State Lett., 2002, 5: A173-A175
[111] Simner S, Anderson M, Bonnett J, Stevenson J. Solid State Ionics, 2004, 175: 79-81
[112] Coffey G W, Hardy J, Pedersen L R, Rieke P, Thomsen E, Walpole M. Solid State Ionics, 2003, 158: 1-9
[113] Coffey G W, Hardy J, Pedersen L R, Rieke P, Thomsen E. Electrochem. Solid-State Lett., 2003, 6: A121-A124
[114] Tsipis E V, Kharton V V. J. Solid State Electrochem., 2008, 12: 1039-1060
[115] Bebelis S, Kournoutis V, Mai A, Tietz F. Solid State Ionics, 2008, 179: 1080-1084
[116] Wang H H, Tablet C, Feldhoff A, Caro J. Adv. Mater., 2005, 17: 1785-1788
[117] Efimov K, Halfer T, Kuhn A, Heitjans P, Caro J, Feldhoff A. Chem. Mater., 2010, 22: 1540-1544
[118] Teraoka Y, Shimokawa H, Kang C Y, Kusaba H, Sasaki K. Solid State Ionics, 2006, 177: 2245-2248
[119] Wei B, Lu Z, Huang X Q, Liu M L, Li N, Su W H. J. Power Sources, 2008, 176: 1-8
[120] Tao Z T, Bi L, Zhu Z W, Liu W. J. Power Sources, 2009, 194: 801-804
[121] Liang F L, Chen J, Li J, Jiang S P, He T M, Pu J, Li J. Electrochem. Commun., 2008, 10: 42-46
[122] Liang F L, Chen J, Jiang S P, Chi B, Pu J, Li J. Electrochem. Solid-State Lett., 2008, 11: B213-B216
[123] Liang F L, Chen J, Jiang S P, Wang F Z, Chi B, Pu J, Li J. Fuel Cells, 2009, 9: 636-642
[124] Chen J, Liang F L, Chi B, Pu J, Jiang S P, Li J. J. Power Sources, 2009, 194: 275-280
[125] Liang F L, Chen J, Chi B, Pu J, Jiang S P, Li J. J. Power Sources, 2011, 196: 153-158
[126] Liang F L, Chen J, Jiang S P, Chi B, Pu J, Li J. Electrochem. Commun., 2009, 11: 1048-1051
[127] 梁凤丽(Liang F L). 华中科技大学博士学位论文(Doctoral Dissertation of Huazhong University of Science & Technology), 2009
[128] Zhou W, Ran R, Shao Z P, Cai R, Jin W Q, Xu N P, Ahn J. Electrochim. Acta, 2008, 53: 4370-4380
[129] Zhou W, Ran R, Cai R, Shao Z P, Jin W Q, Xu N P. J. Power Sources, 2009, 186: 244-251
[130] 邵宗平(Shao Z P), 周嵬(Zhou W), 冉然(Ran R), 高冬梅(Gao D M), 金万勤(Jin W Q). CN 200810156129.6, 2008
[131] Sholklapper T Z, Kurokawa H, Jacobson C P, Visco S J, de Jonghe L C. Nano Lett., 2007, 7: 2136-2141
[132] Armstrong T J, Rich J G. J. Electrochem. Soc., 2006, 153: A515-A520
[133] Huang Y, Vohs J M, Gorte R J. Electrochem. Solid-State Lett., 2006, 9: A237-A240
[134] He H P, Huang Y Y, Regal J, Boaro M, Vohs J M, Gorte R J. J. Am. Ceram. Soc., 2004, 87: 331-336
[135] Jiang S P. Mat. Sci. Eng. A, 2006, 418: 199-210
[136] Vohs J M, Gorte R J. Adv. Mater., 2009, 21: 943-956
[137] Jiang Z Y, Xia C R, Chen F L. Electrochim. Acta, 2010, 55: 3595-3605
[138] Kreuer K D. Annu. Rev. Mater. Res., 2003, 33: 333-359
[139] Ni M, Leung D Y C, Leung M K H. J. Power Sources, 2008, 183: 133-142
[140] Tolchard J, Grande T. J. Solid State Chemistry, 2007, 180: 2808-2815
[141] Lin Y, Ran R, Zhang C M, Cai R, Shao Z P. J. Phys. Chem. A, 2010, 114: 3764-3772
[142] Yang L, Zuo C D, Wang S Z, Cheng Z, Liu M L. Adv. Mater., 2008, 20: 3280-3283
[143] Lin Y, Ran R, Shao Z P. Inter. J. Hydrogen Energy, 2010, 35: 8281-8288
[144] Hibino T, Hashimoto A, Suzuki M, Sano M. J. Electrochem. Soc., 2002, 149: A1503-A1508
[145] He F, Song D, Peng R R, Meng G Y, Yang S F. J. Power Sources, 2010, 195: 3359-3364
[146] Ding H P, Lin B, Liu X Q, Meng G Y. Electrochem. Commun., 2008, 10: 1388-1391
[147] Ling Y H, Zhang X Z, Wang S L, Zhao L, Lin B, Liu X Q. J. Power Sources, 2010, 195: 7042-7045
[148] Ding H P, Xue X J. J. Power Sources, 2010, 195: 7038-7041

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[3] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[4] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[5] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[6] 胡泽浩, 陈婷, 徐彦乔, 江伟辉, 谢志翔. 表面包覆策略:提高全无机铯铅卤钙钛矿纳米晶的稳定性及其在照明显示领域的应用[J]. 化学进展, 2021, 33(9): 1614-1626.
[7] 洪俊贤, 朱旬, 葛磊, 徐鸣川, 吕文珍, 陈润锋. CsPbX3(X = Cl, Br, I) 纳米晶的制备及其应用[J]. 化学进展, 2021, 33(8): 1362-1377.
[8] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[9] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[10] 李肖静, 李永红, 宇富航, 祁伟岩, 姜野, 鲁倩文. 催化氧化脱除二甲苯的催化剂[J]. 化学进展, 2021, 33(12): 2203-2214.
[11] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[12] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[13] 周亿, 胡晶晶, 孟凡宁, 刘彩云, 高立国, 马廷丽. 2D钙钛矿太阳能电池的能带调控[J]. 化学进展, 2020, 32(7): 966-977.
[14] 孟凡宁, 刘彩云, 高立国, 马廷丽. 界面修饰策略在钙钛矿太阳能电池中的应用[J]. 化学进展, 2020, 32(6): 817-835.
[15] 周明浩, 姜爽, 张天永, 史永宏, 金雪, 段鹏飞. 手性钙钛矿纳米材料的构筑及光电性能[J]. 化学进展, 2020, 32(4): 361-370.