English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 410-417 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

有序/无序岩盐结构的Li1+xM1-xO2锂离子电池正极材料

张联齐1*, 肖成伟2, 杨瑞娟1   

  1. 1. 天津理工大学材料科学与工程学院 天津 300384;
    2. 南开大学化学学院 天津 300071
  • 收稿日期:2010-12-01 修回日期:2011-01-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:zhanglianqi@gmail.com E-mail:zhanglianqi@gmail.com
  • 基金资助:

    天津理工大学启动资金项目资助

Ordered/Disordered Rocksalt Structured Li1+xM1-xO2 Cathode Materials for Li-Ion Battery

Zhang Lianqi1*, Xiao Chengwei2, Yang Ruijuan1   

  1. 1. School of Materials Science and Engieering, Tianjin University of Technology, Tianjin 300384, China;
    2. College of Chemistry, Nankai University, Tianjin 300071,China
  • Received:2010-12-01 Revised:2011-01-01 Online:2011-03-24 Published:2011-01-26

锂过量层状有序/无序锂离子电池正极材料因具有出色的电化学性能而被人们广泛关注,并成为研究热点之一。所有该类型材料可以被表述为Li1+xM1-xO2 (M是一种或一种以上的过渡金属元素,x≥0)。但M通常是多个金属元素比如M= Ni1-x-yCoxMny,一些金属元素在材料中也可以具有多种价态形式例如Ni和Mn,而且可有不同的层间/层内阳离子有序。这种材料的成分、结构复杂性以及化合价多变性极容易引起读者理解上的混淆。目前文献中对此类材料的本质的理解仍不够清晰准确。在一些报道中甚至错误地翻译了一些材料的本质,而且已被报道的很多材料本质上可归结为同一类固溶体材料。本文在准确理解此类材料的结构定义基础上,首先用LiAO2-Li2BO3固溶体概念诠释此类材料的本质。结合我们的研究结果,进一步讨论怎样利用相图帮助理解和设计此类材料,并评述它们的最新研究进展。

Recently, Li excess (or Li-rich) layered ordered/disordered materials for Li-ion battery exhibited amazing electrochemical performances and thus received extensive attention. They all can be formulated as Li1+xM1-xO2 (M can be one or multi-metal ions, x≥0). However, the complexity of composition and structure in most of Li1+xM1-xO2 compounds (M usually represents multi-metal ions such as M= Ni1-x-yCoxMny and materials can present different interlayer/intralayer cations ordering in structure) and variability of valence in some metal ions ( different valences in some metals ions such as Ni and Mn may form depending on conditions) easily make readers confused in understanding nature of those materials. The clear interpretation of those materials' nature in references is still not enough at present and even some materials were misinterpreted in some references. In this review, on the basis of their structure, the nature of Li excess (or Li-rich) layered ordered/disordered materials was firstly described precisely according to LiAO2-Li2BO3 solid solution. In combination with our research results, it was further discussed how to utilize phase diagram to assist readers to understand those complicated Li1+xM1-xO2 materials and further design new compounds. Some recent important progress on these materials was also commented.

中图分类号: 

()

[1] Stoyanova R, Zhecheva E, Alcantara R, Tirado J L, Bromiley G, Bromiley F, Ballaran T B. Solid State Ionics, 2003, 161: 197-204
[2] Massarotti V, Bini M, Capsoni D, Altomare A, Moliterni A G G. J. Appl. Cryst. , 1997, 30: 123-127
[3] Castellanos M, West A R. J. Mater. Sci., 1979, 14: 450-454
[4] Zhang L Q, Wang X Q, Muta T, Li D C, Noguchi H, Yoshio M, Ma R Z, Takada K, Sasaki T. J. Power Sources, 2006, 162: 629-635
[5] Zhang L Q, Li D C, Wang X Q, Noguchi H, Yoshio M. Mater. Lett., 2005, 59: 2693-2697
[6] Lu Z, Macneil D D, Dahn J R. Electrochem. Soid-State Lett., 2001, 4: A 191-A 194
[7] Numata K, Sakaki C, Yamanaka S. Chem. Lett., 1997, 8: 725-726
[8] Park Y J, Hong Y S, Wu X L, Kim M G, Ryu K S, Chang S H. J. Electrochem. Soc. , 2004, 151: A720-A727
[9] Zhang L Q, Noguchi H, Yoshio M. J. Power Sources, 2002, 110: 57-64
[10] Ammundsen B, Paulsen J, Davidson I, Liu R S, Shen C H, Chen J M, Jang L Y, Lee J F. J. Electrochem. Soc., 2002, 149: A431-436
[11] Lu Z, Dahn J R. J. Electrochem. Soc., 2002, 149: A1454-A1459
[12] Tabuchi M, Nakashima A, Shigemura H, Ado K, Kobayashi H, Sakaebe H, Kageyama H, Nakamura T, Kohzaki M, Hirano A, Kanno R. J. Electrochem. Soc., 2002, 149: A509-A524
[13] Lu Z, Dahn J R. J. Electrochem. Soc., 2002, 149: A815-A822
[14] Whitfield P S, Niketic S, Davidson I D. J. Power Sources, 2005, 146: 617-621
[15] Johnson C S, Li N C, Lefief C, Thackeray M M. Electrochem. Commun., 2007, 9: 787-795
[16] Zhang L Q, Wang X Q, Noguchi H, Yoshio M, Takada K, Sasaki T. Electrochim. Acta, 2004, 49: 3305-3311
[17] Zhang L Q, Noguchi H. J. Electrochem. Soc. , 2003, 150: A 601-A 607
[18] Zhang L. Q, Takada K, Ohta N, Osada M, Sasaki T. J. Power Sources, 2007, 174: 1007-1011
[19] Shigemura H, Tabuchi M, Sakaebe H, Kobayashi H, Kageyama H. J. Electrochem. Soc., 2003, 150: A638-A644
[20] Kim J S, Johnson C S, Thackeray M M. Electrochem. Commun., 2002, 4: 205-209
[21] Lee J H, Kim H S, Lee K T, Oh S H. The 11th International Meeting on Lithium Batteries, Abstract No. 102, Monterey, California, US, 2002, 6: 23-28
[22] Moore J, Johnson C S, Thackeray M M. J. Power Sources, 2003, 119/121: 216-220
[23] Kobayashi H, Uebou Y, Tabuchi M, Kageyama H, Yamamoto Y, Matsuoka M, Tamaki J. J. Electrochem. Soc., 2003, 150: A1408-A1415
[24] Park K, Cho M H, Jin S J, Song C H, Nahm K S. J. Power Sources, 2005, 146: 281-286
[25] Kim J H, Sun Y K. J. Power Sources, 2003, 119/121: 166-170
[26] Rossen E, Jones C D W, Dahn J R. Solid State Ionics, 1992, 57: 311-318
[27] Kobayashi H, Sakaebe H, Kageyama H, Tatsumi K, Arachi Y, Kamiyama T. J. Mater. Chem., 2003, 13: 590-595
[28] Peng Q W, Tang Z Y, Zhang L Q, Liu X. J. Mater. Res. Bull., 2009, 44(11): 2147-2151
[29] Quine T E, Duncan M J, Armstrong A R, Robertson A D, Bruce P G. J. Mater. Chem., 2000, 10: 2838-2841
[30] Armstrong A. R, Bruce P. G. Nature, 1996, 381: 499-500
[31] Kim J M, Chung H T. J. Power Sources, 2003, 115: 125-130
[32] Croguennec L, Suard E, Willmann P, Delmas C. Chem. Mater., 2002, 14: 2149-2157
[33] Zhang L Q, Noguchi H, Li D C, Muta T, Wang X Q, Yoshio M, Taniguchi I. J. Power Sources, 2008, 185: 534-541
[34] Zhang L Q, Takada K, Ohta N, Wang L Z, Sasaki T, Watanabe M. Mater. Lett., 2004, 58: 3197-3200
[35] Zhang L. Q, Takada K, Ohta N, Fukuda K, Osada M, Wang L Z, Sasaki T, Watanabe M. J. Electochem. Soc., 2005, 152: A171-A178
[36] Zhang L Q, Takada K, Ohta N, Fukuda K, Sasaki T. J. Power Sources, 2005, 146: 598-601
[37] Jiang J, Eberman K W, Krause L J, Dahn J R. J. Electochem. Soc., 2005, 152(9) : A1879-1889
[38] Gao J, Kim J, Manthiram A. Electrochem. Commun., 2009, 11: 84-86
[39] Gao J, Manthiram A. J. Power Sources, 2009, 191: 644-647
[40] Kang S. H, Thackeray M. M. Electrochem. Commun., 2009, 11: 748-751
[41] Wu Y, Vadivel Murugan A, Manthiram A. J. Electrochem. Soc., 2008, 155(9): A635-A641
[42] Wu Y, Manthiram A. Solid State Ionics, 2009, 180: 50-56
[43] Wang Q Y, Liu J, Vadivel Murugan A, Manthiram A. J. Mater. Chem., 2009, 19: 4965-4972
[44] Liu J, Manthiram A. J. Mater. Chem., 2010, 20: 3961-3967
[45] Liu J, Wang Q. Y, Reeja-Jayan B, Manthiram A. Electrochem. Commun., 2010, 12: 750-753
[46] Liu J, Reeja-Jayan B, Manthiram A. J. Phys. Chem. C, 2010, 114: 9528-9533
[47] Mather G C, Dussarrat C, Etourneau J, West A R. J. Mater. Chem., 2000, 10: 2219-2230
[48] Li W, Reimer J N, Dahn J R. Phys. Rev. B, 1992, 46: 3236-3246
[49] Kobayashi H, Kanno R, Kawamoto Y, Tabuchi M, Nakamura O, Takano M. Solid State Ionics, 1995, 82: 25-31
[50] Von Kreuzberg G, Stewener F, Hoppe R Z. Anorg. Allg. Chem., 1970, 379: 242
[51] Gopalakrishnan J, Bhat V. Mater. Res. Bull., 1987, 22: 769-774
[52] Asakura K, Okada S, Arai H, Tobishima S, Sakurai Y. J. Power Sources, 1999, 81/82: 388-392
[53] Kobayashi H, Tabuchi M, Shikano M, Kageyama H, Kanno R. J. Mater. Chem., 2003, 13: 957-962
[54] Ohzuku T, Ariyoshi M, Makimura Y, Yabuuchi N, Sawai K. Electrochem., 2005, 73(1): 2-11

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.