English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 401-409 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池安全性能研究

吴凯1,2*, 张耀2, 曾毓群2, 杨军1   

  1. 1. 上海交通大学化学化工学院 上海 200240;
    2. 东莞新能源科技有限公司 东莞 523808
  • 收稿日期:2010-09-01 修回日期:2010-10-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:wuk@atlbattery.com E-mail:wuk@atlbattery.com
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2007CB209700)资助

Safety Performance of Lithium-Ion Battery

Wu Kai1,2*, Zhang Yao2, Zeng Yuqun2, Sun Shigang1   

  1. 1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240,China;
    2. Dongguan Amperex Technology Limited, Dongguan 523808, China
  • Received:2010-09-01 Revised:2010-10-01 Online:2011-03-24 Published:2011-01-26

随着锂离子电池能量密度进一步提高,成本进一步降低,其应用领域越来越广泛,特别是最近几年来在电动汽车和储能领域的应用被寄予厚望。然而,锂离子电池的安全性是目前制约其应用领域扩展的主要瓶颈之一。锂离子电池的安全性归根结底取决于锂离子电池材料的热稳定性,本文综述了锂离子电池材料热稳定性的理解和提高方面的最新进展。过充、热箱、针刺、挤压和内短路是最为关键和具有代表性的安全测试项目,本文在结合本课题组研究成果的基础上讨论了影响这些安全测试项目的影响因素,并总结了改善锂离子电池安全性能的方法。

Application of lithium ion battery (LIB) has been widely extended as its energy density is improved and its cost is reduced. Especially in recent years, significant attention has been paid to application of LIB in electric vehicles and energy storage. However, safety performance of LIB is considered as one of the major barriers which impede the expansion of these application fields. Since safety performance of LIB is fundamentally determined by thermal stability of materials for lithium-ion battery, this paper reviews recent research progress in this field. Among all of the safety tests, overcharge, hot box, nail penetration, crush and internal short are usually considered to be critical ones. This paper discusses major factors influencing these safety tests based on research results obtained in the authors'group. This paper also summarizes state-of-the-art approaches to improve safety performance of LIB in terms of battery materials, cell design and manufacturing.

中图分类号: 

()

[1] 胡广侠(Hu G X), 谢晶莹(Xie J Y). 电化学(Electro-chemistry) 2002, 8(3): 245-250
[2] 王静(Wang J), 余仲宝(Yu Z B), 初旭光(Chu X G), 万新华(Wan X H), 刘庆国(Liu Q G). 电池(Battery Bimonthly), 2003, 33(6): 388-391
[3] Spotnitz R, Franklin J. J. Power Sources, 2003, 113: 81-100
[4] 王青松(Wang Q S), 孙金华(Sun J H), 陈思凝(Chen S N), 姚晓林(Yao X L), 陈春华(Chen C H), 电池(Battery Bimonthly), 2005, 35(3): 240-241
[5] 唐致远(Tang Z Y), 陈玉红(Chen Y H), 卢星河(Lu X H), 谭才渊(Tan C Y). 化学进展(Progress in Chemistry), 2006, 36(1): 74-76
[6] Balakrishnan P G, Ramesh R, Prem K T. J. Power Sources, 2006, 155: 401-414
[7] Du Pasquier A, Disma F, Bowmer T, Gozdz A S, Amatucci G, Tarascon J M. J. Electrochem. Soc., 145(2), 1998: 472-477
[8] Zhang Z, Fouchard D, Rea J R. J. Power Sources, 1998, 70(1): 16-20
[9] Maleki H, Deng G, Anani A. J. Electrochem. Soc., 1999, 146(9): 3224-3229
[10] Richard M N, Dahn J R. J. Electrochem. Soc., 1999, 146 (6): 2068-2077
[11] MacNeil D D, Larcher D, Dahn J R. J. Electrochem. Soc., 1999, 146(10): 3596-3602
[12] Andersson A M, Herstedt M, Bishop A G. Electrochim. Acta, 2002, 47: 1885-1898
[13] Roth E P, Doughty D H, Franklin J. J. Power Sources, 2004, 134: 222-234
[14] Jiang J W, Dahn J R. Electrochim. Acta, 2004, 49: 4599-4604
[15] Watanabe I, Yamaki J. J. Power Sources, 2006, 153: 402-404
[16] Yang H, Shen X D. J. Power Sources, 2007, 167: 515-519
[17] Biensan P, Simon B, Peres J P. J. Power Sources, 1999, 81/82: 906-912
[18] Dahn J R, Fuller E W, Obrovac M, von Sacken U. Solid State Ionics, 1994, 69(3/4): 265-270
[19] Veluchamy A, Doh C H, Kim D H, Lee J H, Shin H M, Jin B S, Kim H S, Moon S I. J. Power Sources, 2009, 189: 855-858
[20] MacNeil D D, Dahn J R. J. Electrochem. Soc., 2001, 148(11): A1211-A1215
[21] Wang Q S, Sun J H, Chen D L, Chen C H. J. Alloys Comp., 2009, 468: 477-481
[22] Arai H, Tsuda M, Saito K, Hayashi M, Sakurai Y. J. Electrochem. Soc., 2002, 149(4): A401-A406
[23] Venkatachalapathy R, Lee C W, Lu W Q, Prakash J. Electrochem. Comm., 2000, 2: 104-107
[24] Belharouak I, Vissers D, Amine K. J. Electrochem. Soc., 2006, 153(11): A2030-A2035
[25] Yoon W S, Balasubramanian M, Yang X Q, McBreen J, Hanson J. Electrochem. Solid-State Lett., 2005, 8(2): A83-A86
[26] Yoon W S, Hanson J, McBreen J, Yang X Q. Electrochem. Comm., 2006, 8: 859-862
[27] Belharouak I, Lu W Q, Liu Jun, Vissers D, Amine K. J. Power Sources, 2007, 174: 905-909
[28] Nam K W, Yoon W S, Yang X Q. J. Power Sources, 2009, 189: 515-518
[29] Jiang J W, Dahn J R. Electrochem. Comm., 2004, 6: 724-728
[30] Xiang H F, Wang H, Chen C H, Ge X W, Guo S, Sun J H, Hu W Q. J. Power Sources, 2009, 191: 575-581
[31] Sun Y K, Myung S T, Park B C, Prakash J, Belharouak I, Amine K. Nat. Mater., 2009, 8: 320-324
[32] Li C, Zhang H P, Fu L J, Liu H, Wu Y P, Rahm E, Holze R, Wu H Q. Electrochim. Acta, 2006, 51(19): 3872-3883
[33] Botte G G, White R E, Zhang Z M. J. Power Sources, 2001, 97/98: 570-575
[34] Kawamura T, Kimura A, Egashira M, Okada S,Yamaki J I. J. Power Sources, 2002, 104(2): 260-264
[35] Gnanaraj J S, Zinigrad E, Asraf L, Gottlieb H E, Sprecher M, Schmidt M, Geissler W, Aurbach D. J. Electrochem. Soc., 2003, 150(11): A1533-A1537
[36] Ravdel B, Abraham K M, Gitzendanner R, DiCarlo J, Lucht B, Campion C. J. Power Sources, 2003, 119/121: 805-810
[37] Campion C L, Li W T, Lucht B L. J. Electrochem. Soc., 2005, 152(12): A2327-A2334
[38] Wang X M, Yasukawa E, Kasuya S. J. Electrochem. Soc., 2001, 148(10): A1058-A1065
[39] Wang X M, Yasukawa E, Kasuya S. J. Electrochem. Soc., 2001, 148(10): A1066-A1071
[40] Xu K, Ding M S, Zhang S. J. Electrochem. Soc., 2003, 150: A161-A169
[41] Zhang S, Xu K, Jow T R. J. Power Source, 2003, 113: 166-172
[42] Chen S Y, Wang Z X, Zhao H L, Qiao H W, Luan H L, Chen L Q. J. Power Sources, 2009, 187(1): 229-232
[43] Achiha T, Nakajima T, Ohzawa Y, Koh M, Yamauchi A, Kagawa M, Aoyama H. J. Electrochem. Soc., 2010, 157(6): A707-A712
[44] Ohsaki T, Kishi, Kuboki T, Takami N, Shimura N, Sato Y, Sekino M, Satoh A. J. Power. Sources, 2005, 146: 97-100
[45] Tobishima S, Takei K, Sakurai Y, Yamaki J. J Power Sources,2000,90(2):188-195
[46] Leising R A, Palazzo M J, Takeuchi E S, Takeuchi K J. J. Power Sources, 2001, 97/98: 681-683
[47] Zeng Y Q, Wu K, Wang D Y, Wang Z X, Chen L Q. J. Power Sources, 2006, 160: 1302-1307
[48] Kong W H, Li H, Huang X J, Chen L Q. J. Power Sources, 2005, 142: 285-291
[49] Kim J S, Noh M, Cho J. J. Power Sources, 2006, 153: 345-349
[50] Kise M, Yoshioka S, Kuriki H. J. Power Sources, 2007, 174(2): 861-866
[51] Chen G, Richardson T S. Electrochem. Solid State Lett., 2004, 7(2): A23-A26
[52] Thomas-Alyea K E, Newman J, Chen G Y, Riohardson T J. J. Electrochem. Soc., 2004, 151(4): A509-A521
[53] 艾新平(Ai X P), 林聪(Lin C), 廖钦林(Liao Q L), 刘秉东(Liu B D), 杨汉西(Yang H X), 武汉大学学报(理学版) (J. Wuhan Univ. (Nat. Sci. Ed.)), 2006, 52(2): 149-153
[54] Cha C S, Ai X P, Yang H X. J. Power Sources, 1995, 54(2): 255-258
[55] Chen J, Buhrmester C, Dahn J R. Electrochem. Solid-State Lett., 2005, 8(1): A59-A62
[56] Xiao L F, Ai X P, Cao Y L. Electrochim. Acta, 2004, 49(24): 4189-4196
[57] Chen Z H, Qin Y, Amine K. Electrochim. Acta, 2009, 54(24): 5605-5613
[58] Zhang S S. J. Power Sources, 2007, 164(1): 351-364
[59] Santhanagopalan S, Ramadass P, Zhang Z M. J. Power Sources, 2009, 194: 550-557

[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[4] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[5] 张巍, 谢康, 汤云灏, 秦川, 成珊, 马英. 过渡金属基MOF材料在选择性催化还原氮氧化物中的应用[J]. 化学进展, 2022, 34(12): 2638-2650.
[6] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[7] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[8] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[9] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[10] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[11] 颜高杰, 吴琼, 谈玲华. 富氮唑类金属配合物的设计合成及应用[J]. 化学进展, 2021, 33(4): 689-712.
[12] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[13] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[14] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[15] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
阅读次数
全文


摘要

锂离子电池安全性能研究