English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 390-400 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池电极界面特性研究方法

秦银平1, 庄全超1*, 史月丽1, 江利1, 孙智1, 孙世刚2   

  1. 1. 中国矿业大学材料科学与工程学院 徐州 221116;
    2. 固体表面物理化学国家重点实验室 厦门大学化学化工学院化学系 厦门 361005
  • 收稿日期:2010-10-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:zhuangquanchao@126.com E-mail:zhuangquanchao@126.com
  • 基金资助:

    中央高校基本科研业务费专项资金项目(No. 2010LKHX03,2010QNB04,2010QNB05)、中国矿业大学科技攀登计划(No. ON090237)和中国矿业大学青年科技基金项目(No. ON080282)资助

Methods on Investigating Properties of Electrode/Electrolyte Interfaces in Lithium-Ion Batteries

Qin Yinping1, Zhuang Quanchao1*, Shi Yueli1, Jiang Li1, Sun Zhi1   

  1. 1. School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China;
    2. State Key Lab for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen 361005, China
  • Received:2010-10-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

电极界面特性是影响锂离子电池充放电循环容量与稳定性的重要因素。本文总结了目前对电极界面特性进行研究的方法,主要包括传统的电化学方法、显微方法、谱学方法、电化学石英微晶天平等,重点论述了上述研究方法的原理、优缺点和在研究电极界面特性中的应用,以及这些方法相结合所取得的一些研究进展,并指出在今后的工作中,无论是对新材料的研究还是传统材料的研究,这些方法都仍将发挥重要作用。

The rechargeable lithium-ion battery has been extensively used in mobile communication and portable instruments due to its many advantages, such as high volumetric and gravimetric energy density and low self-discharge rate. In addition, it is the most promising candidate as the power source for (hybrid) electric vehicles and stationary energy storage. The properties of electrode/electrolyte interfaces play an important role in the electrochemical performance of the electrode material and a battery, such as the capacities, irreversible charge “loss”, rate capability and cyclability. In present paper, the methods to investigate the properties of electrode/electrolyte interfaces, for example, traditional electrochemical methods, microscopy methods, spectroscopic methods, electrochemical quartz crystal microgravimetry (EQCM) are summarized. The principles, advantages and disadvantages of these methods and their applications in investigating the properties of electrode/electrolyte interfaces, especially the progress in the combination of these methods to investigate the properties of electrode/electrolyte interfaces, are introduced in detail, and these methods will be considerable to study the new materials or the traditional materials for lithium-ion batteries in the future.

中图分类号: 

()

[1] Armand M, Tarascon J M. Nature, 2008, 451: 652-657
[2] Yan J, Zhang J, Su Y C, et al. Electrochim. Acta, 2010, 55: 1785-1794
[3] Paled E. J. Electrochem. Soc., 1979, 126: 2047-2056
[4] Fong R, Sacken U V, Dahn J R. J. Electrochem. Soc., 1990, 137: 2009-2013
[5] 倪江锋(Ni J F), 周恒辉(Zhou H H), 陈继涛(Chen J T)等. 化学进展(Progress in Chemistry), 2004, 16(3): 335-342
[6] 庄全超(Zhuang Q C), 魏国祯(Wei G Z), 董全峰(Dong Q F)等. 物理化学学报(Acta Phys. Chim. Sin.), 2009, 25(3): 406-410
[7] Zeng Z Y, Tu J P, Huang X H, et al. Thin Solid Films, 2009, 517: 4767-4771
[8] Zhuang Q C, Chen Z F, Dong Q F, et al. Chinese Science Bulletin, 2006, 51(9): 1055-1059
[9] Zhuang Q C,Tian L L, Wei G Z, et al. Chinese Science Bulletin, 2009, 54(15): 2627-2632
[10] 庄全超(Zhuang Q C), 徐守冬(Xu S D), 邱祥云(Qiu X Y)等. 化学进展(Progress in Chemistry), 2010, 22(9): 1044-1057
[11] Shenouda A Y, Liu H K. J. Alloys Compd., 2009, 477: 498-503
[12] 庄全超(Zhuang Q C), 樊小勇(Fan X Y), 许金梅(Xu J M)等. 物理化学学报(Acta Phys. Chim. Sin.), 2006, 22(2): 234-238
[13] 庄全超(Zhuang Q C), 魏涛(Wei T), 魏国祯(Wei G Z)等. 化学学报(Acta Chimica Sinica), 2009, 67(19): 2184-2192
[14] Zhuang Q C, Fan X Y, Xu J M, et al. Chemical Research in Chinese Universities, 2008, 24(4): 511-515
[15] Zhuang Q C, Wei T, Du L L, et al. J. Phys. Chem. C, 2010, 114: 8614-8621
[16] 庄全超(Zhuang Q C), 魏国祯(Wei G Z), 许金梅(Xu J M)等. 化学学报(Acta Chimica Sinica), 2008, 66(7): 722-728
[17] 庄全超(Zhuang Q C), 陈作锋(Chen Z F), 董全峰(Dong Q F). 高等学校化学学报(Chemical Journal of Chinese Universities), 2005, 11: 2073-2076
[18] Fu Y B, Chen C, Qiu C C, et al. J. Appl. Electrochem., 2009, 39: 2597-2603
[19] Shim E G, Nam T H, Kim G K, et al. J. Power Sources, 2008, 175: 533-539
[20] Zeng Y W. J. Power Sources, 2008, 183: 316-324
[21] Konishi T, Hayashi A, Tadanaga K, et al. J. Non-Cryst. Solids, 2008, 354: 380-385
[22] Dalmolin C, Biaggio S R, Rocha-Filho R C, et al. Synth. Met., 2010, 160: 173-179
[23] Graczyk-Zajac M, Mera G, Kaspar J, et al. J. Eur. Ceram. Soc., 2010, 30: 3235-3243
[24] Amaral S T, Müller I L. Corros. Sci., 1999, 41: 747-758
[25] Hasegawa T, Mukai S R, Shirato Y, et al. Carbon, 2004, 42: 2573-2579
[26] Ortiz G F, Alcántara R, Lavela P, et al. J. Electrochem. Soc., 2005, 152(9): A1797-A1803
[27] Jung K N, Pyun S I. Electrochim. Acta, 2006, 51: 4649-4658
[28] Jung K N, Pyun S I. Electrochim. Acta, 2007, 52: 2009-2017
[29] Jha S K, Sangal A, Kant R. J. Electroanal. Chem., 2008, 615: 180-190
[30] Luo Z A, Xiao J Z, Xia F, et al. Trans. Nonferrous Met. Soc. China, 2006, 16: 142-147
[31] Jin Y S, Kim T Y, Kim K Y. Surf. Coat. Technol., 1998, 106: 220-227
[32] Ybarra G O, Moina C A, Florit M I, et al. J. Electroanal. Chem., 2007, 609: 129-139
[33] Hang B T, Watanabe T, Eashira M, et al. J. Power Sources, 2005, 150: 261-271
[34] Hang B T, Doi T, Okadac S, et al. J. Power Sources, 2007, 174: 493-500
[35] Hang B T, Hayashi H, Yoon S H, et al. J. Power Sources, 2008, 178: 393-401
[36] Choi N S, Yew K H, Kim H, et al. J. Power Sources, 2007, 172: 404-409
[37] Choi N S, Yew K H, Lee K Y, et al. J. Power Sources, 2006, 161: 1254-1259
[38] Inaba M, Doi T, Iriyama Y, et al. J. Power Sources, 1999, 81/82: 554-557
[39] Doi T, Inaba M, Iriyama Y, et al. J. Electrochem. Soc., 2008, 155(1): A20-A23
[40] Saitoh M, Sano M, Fujita M, et al. J. Electrochem. Soc., 2004, 151(1): A17-A22
[41] Inaba M, Siroma Z, Funabiki A, et al. Chem. Lett., 1995, 24: 661-662
[42] Inaba M, Siroma Z, Funabiki A, et al. Langmuir, 1996, 12: 1535-1540
[43] Inaba M, Siroma Z, Kawatate Y, et al. J. Power Sources, 1997, 68: 221-226
[44] Inaba M, Kawatate Y, Funabiki A, et al. Electrochim. Acta, 1999, 45: 99-105
[45] Doi T, Inabab M, Tsuchiyac, et al. J. Power Sources, 2008, 180: 539-545
[46] Inaba M, Yoshida H, Ogumi Z, et al. J. Electrochem. Soc., 1995, 142: 20-25
[47] Morigaki K, Ohta A. J. Power Sources, 1998, 76: 159-166
[48] Jeong S K, Inaba M, Abe T, et al. J. Electrochem. Soc., 2001, 148: A989-A993
[49] Jeong S K, Inaba M, Iriyama Y, et al. Electrochim. Acta, 2002, 47: 1975-1992
[50] Jeong S K, Inaba M, Iriyama Y, et al. J. Power Sources, 2003, 119/121: 555-560
[51] Morigaki K. J. Power Sources, 2002, 103: 253-264
[52] Clémenon A, Appapillai A T, Kumar S, et al. Electrochim. Acta, 2007, 52: 4572-4580
[53] Aurbach D. J. Power Sources, 2000, 89: 206-218
[54] Lewis R B, Timmons A, Mar R E, et al. J. Electrochem. Soc., 2007, 154 (3): A213-A216
[55] Tian Y, Timmons A, Dahn J R. J. Electrochem. Soc., 2009, 156(3): A187-A191
[56] Lucas I T, Pollak E, Kostecki R. Electrochem. Commun., 2009, 11: 2157-2160
[57] Li J T, Chen S R, Fan X Y, et al. Langmuir, 2007, 23: 13174-13180
[58] Song S W, Baek S W. Electrochim. Acta, 2009, 54: 1312-1318
[59] Lindstrm R, Maurice V, Zanna S, et al. Surf. Interface Anal., 2006, 38: 6-18
[60] Nytén A, Stjerndahl M, Rensmo H, et al. J. Mater. Chem., 2006, 16: 3483-3488
[61] Leroy S, Blanchard F, Dedryvère R, et al. Surf. Interface Anal., 2005, 37: 773-781
[62] Song S W, Baek S W. Electrochim. Acta, 2009, 54: 1312-1318
[63] Santner H J, Korepp C, Winter M, et al. Anal. Bioanal. Chem., 2004, 379: 266-271
[64] Markevicha E, Sharabia R, Borgela V, et al. Electrochim. Acta, 2010, 55: 2687-2696
[65] Baddour-Hadjean R, Pereira-Ramos J P. Chem. Rev., 2010, 110: 1278-1319
[66] Aurbach D, Weissman I, Schechter A. Langmiur, 1996, 12(16): 3991-4007
[67] Ramana C V, Massot M, Julien C M, et al. Surf. Interface Anal., 2005, 37: 412-416
[68] Eshkenazi V, Peled E, Burstein L, et al. Solid State Ionics, 2004, 170: 83-91
[69] Dedryvère R, Martinez H, Leroy S, et al. J. Power Sources, 2007, 174: 462-468
[70] Oswald S, Nikolowski K, Ehrenberg H. Anal. Bioanal. Chem., 2009, 393: 1871-1877
[71] Verma P, Maire P, Novák P. Electrochim. Acta, 2010, 55: 6332-6341
[72] Ensling D, Stjerndahl M, Nytén A, et al. J. Mater. Chem., 2009, 19: 82-88
[73] Osman Z, Arof A K. Electrochim. Acta, 2003, 48: 993-999
[74] Deepa M, Agnihotry S A, Gupta D, et al. Electrochim. Acta, 2004, 49: 373-383
[75] Subban R H Y, Arof A K. Eur. Polym. J., 2004, 40: 1841-1847
[76] Wu C, Bai Y, Wu F. J. Power Sources, 2009, 189: 89-94
[77] Aurbach D. J. Power Sources, 2000, 89: 206-218
[78] Li L F, Xie B, Lee H S, et al. J. Power Sources, 2009, 189: 539-542
[79] 田雷雷(Tian L L), 庄全超(Zhuang Q C), 王蓉(Wang R), 崔永丽(Cui Y L), 方亮(Fang L), 强颖怀(Qing Y H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2010, 31(12): 2468-2473
[80] Mukai S R, Hasegawa T, Takagi M, et al. Carbon, 2004, 42: 837-842
[81] Stephan A M, Kumar T P, Kulandainathan M A, et al. J. Phys. Chem. B, 2009, 113: 1963-1971
[82] Jozwiak P, Garbarczyk J E, Wasiucionek M, et al. Solid State Ionics, 2008, 179: 46-50
[83] Moshkovich M, Cojocaru M, Gottlieb H E, et al. J. Electroanal. Chem., 2001, 497: 84-96
[84] Dedryvère R, Laruelle S, Grugeon S, et al. J. Electrochem. Soc., 2005, 152(4): A689-A696
[85] Cheng H, Zhu C B, Lu M, et al. J. Power Sources, 2007, 173: 531-537
[86] Inaba M, Yoshida H, Ogumi Z. J. Electrochem. Soc., 1995, 142: 20-26
[87] Huang W W, Frech R. J. Electrochem. Soc., 1998, 145: 765-770
[88] Baddour-Hadjean R, Navone C, Pereira-Ramos J P. Electrochim. Acta, 2009, 54: 6674-6679
[89] Huang W W, Frech R. J. Power Sources, 1999, 81/82: 616-620
[90] Li H, Mo Y J, Pei N, et al. J. Phys. Chem. B, 2000, 104: 8477-8480
[91] Matsuo Y, Kostecki R, McLarnon F. J. Electrochem. Soc., 2001, 148(7): A687-A692
[92] Li G F, Li H, Mo Y G, et al. Chem. Phys. Lett., 2000, 330: 249-254
[93] Li G F, Li H, Mo Y J, et al. J. Power Sources, 2002, 104: 190-194
[94] Itoh T, Abe K, Mohamedi M, et al. J. Solid State Electrochem., 2001, 5: 328-333
[95] Mills A, Hill G, Stewart M, et al. Appl. Spectrosc., 2004, 58(8): 922-928
[96] Sztainbuch I W. J. Chem. Phys., 2006, 125: art. no. 124707
[97] Lefrant S, Baibarac M, Baltog I. J. Mater. Chem., 2009, 19: 5690-5704
[98] Ostrovskii D, Ronci F, Scrosati B, et al. J. Power Sources, 2001, 94: 183-188
[99] Dominko R, Ar Acˇ on I, Kodre A, et al. J. Power Sources, 2009, 189: 51-58
[100] Yoon S, Lee J M, Kim H, et al. Electrochim. Acta, 2009, 54: 2699-2705
[101] Behrens M, Wontcheu J, Kiebach R, et al. Chem. Eur. J., 2008, 14: 5021-5029
[102] Reddy M V, Levasseur A. J. Electroanal. Chem., 2010, 639: 27-35
[103] Yang Z X, Yang W S, Evans D G, et al. J. Power Sources, 2009, 189: 1147-1153
[104] Li G, Yang Z X, Yang W S. J. Power Sources, 2008, 183: 741-748
[105] Wang L, Li X, Jiang X Q, et al. Solid State Sciences, 2010, 12: 1248-1252
[106] Thirunakaran R, Sivashanmugam A, Gopukumar S, et al. J. Power Sources, 2009, 187: 565-574
[107] Huang S Y, Liu X Y, Li Q Y, et al. J. Alloys Compd., 2009, 472: L9-L12
[108] Okumura T, Fukutsuka T, Uchimoto Y, et al. J. Power Sources, 2009, 189: 643-645
[109] Fedorková A, Oriňáková R, Oriňák A, et al. J. Power Sources, 2010, 195: 3907-3912
[110] Li J T, Maurice V, Mrowiecka J S, et al. Electrochim. Acta, 2009, 54: 3700-3707
[111] Hong S F, Chen L C. Electrochim. Acta, 2008, 53: 5306-5314
[112] Garcia E M, Santos J S, Pereira E C, et al. J. Power Sources, 2008, 185: 549-553
[113] Celante V G, Freitas M B J G. J. Appl. Electrochem., 2010, 40: 233-239
[114] Honbo H, Momose H. J. Electroanal. Chem., 2010, 638: 269-274
[115] Song S W, Richardson T J, Zhuang J V, et al. Electrochim. Acta, 2004, 49: 1483-1490
[116] Bueno P R, Faria R C, Bulhes L O S. Solid State Ionics, 2005, 176: 1175-1180
[117] Shouji E, Buttry D A. Electrochim. Acta, 2000, 45: 3757-3764
[118] Kwon K, Kong F, McLarnon F, et al. J. Electrochem. Soc., 2003, 150(2): A229-A233
[119] Kwon K, Evans J W. Electrochim. Acta, 2004, 49: 867-872
[120] Aurbach D, Levi M D, Levi E. Solid State Ionics, 2008, 179: 742-751
[121] Luo W B, Li X H, Dahn J R. Chem. Mater., 2010, 22: 5065-5073
[122] Muraliganth T, Manthiram A. J. Phys. Chem. C, 2010, 114: 15530-15540
[123] Dupré N, Martin J F, Guyomard D, et al. J. Mater. Chem., 2008, 18: 4266-4273
[124] Dupré N, Martin J F, Guyomard D, et al. J. Power Sources, 2009, 189: 557-560
[125] Vijayakumar M, Kerisit S, Yang Z G, et al. J. Phys. Chem. C, 2009, 113: 20108-20116
[126] Nakahara K, Iwasa S, Iriyama J, et al. Electrochim. Acta, 2006, 52: 921-927
[127] Shenouda A Y. Electrochim. Acta, 2006, 51: 5973-5981
[128] Sauvage F, Bodenez V, Vezin H, et al. J. Power Sources, 2010, 195: 1195-1201
[129] 庄全超(Zhuang Q C), 许金梅(Xu J M), 田景华(Tian J H)等. 高等学校化学学报(Chemical Journal of Chinese Universities), 2008, 29: 973-976
[130] Grey C P, Dupré N. Chem. Rev., 2004, 104: 4493-4512
[131] 张忠如(Zhang Z R), 杨勇(Yang Y), 刘汉三(Liu H S). 化学进展(Progress in Chemistry), 2003, 15(1):18-24
[132] Endo E, Ata M, Tanaka K, et al. J. Electrochem. Soc., 1998, 145: 3757-3764
[133] Endo E, Tanaka K, Sekaia K. J. Electrochem. Soc., 2000, 147: 4029-4033

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.