English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 382-389 前一篇   后一篇

• 综述与评论 •

有机硼酸锂盐及亚硫酸酯类功能电解质材料

陈人杰1,2, 何舟影1, 吴锋1,2*   

  1. 1. 北京理工大学化工与环境学院 环境科学工程北京重点实验室 北京 100081;
    2. 国家高技术绿色材料发展中心 北京 100081
  • 收稿日期:2010-09-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:wufeng863@vip.sina.com E-mail:wufeng863@vip.sina.com
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2009CB220100)、国家自然科学基金项目(No.20803003)、国际科技合作专项项目(No.2010DFB63370)和教育部新世纪优秀人才支持计划(No.NCET-10-00382006)资助

Lithium Organic Borate Salt and Sulfite Functional Electrolytes

Chen Renjie1,2, He Zhouying1, Wu Feng1,2*   

  1. 1. Beijing Key Laboratory of Environmental Science and Engineering, School of Chemical Engineering and the Environment, Beijing Institute of Technology, Beijing 100081, China;
    2. National Development Center of High Technology Green Materials, Beijing 100081, China
  • Received:2010-09-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

随着锂离子电池对高安全性、高容量、高功率等性能的技术需求,新型功能电解质材料的研究开发成为锂离子电池新材料领域研发工作的重点。本文对面向锂离子电池应用的功能电解质材料锂盐和添加剂的最新研究进展作了较为全面的阐述,其中重点介绍了本研究团队近年来在面向改善锂离子电池安全性能、提高其温度适应性、增强电解质与电极材料相容特性等方面研究开发的系列基于双草酸硼酸锂 及二氟草酸硼酸锂 等有机硼酸锂盐和亚硫酸酯类等添加剂的新型功能电解质材料,其表现出高的热稳定性和良好的电化学性能。而且,其中的有机硼酸锂盐和亚硫酸酯还可以作为SEI成膜材料进行应用,其在石墨电极表面可形成稳定的SEI膜,有利于改善电池的循环寿命、自放电、库仑效率和不可逆容量衰减。最后,本文探讨了当前存在的问题及未来的研究方向,并对其应用前景进行了展望。

With the rapid development of lithium ion batteries with higher energy density, higher power density and high security, the research of new functional electrolytes has attracted considerable attention in novel materials field for lithium ion batteries. In this paper, the recent research advances of key technologies on the application of lithium salts and additive functional electrolytes in lithium ion batteries are reviewed, especially on the results of our research team focusing on new functional electrolytes based on lithium organic borate salt, such as lithium bis(oxalato)borate and lithium oxalyldifluoroborate , and sulfite additives for the purpose of improving security, temperature adaptability and the compatibility between electrolytes and electrodes of lithium ion batteries. These electrolytes exhibit high thermal stability and good electrochemical properties. Moreover, lithium organic borate salt and sulfite have been investigated as new solid electrolyte interphase (SEI) film-forming materials. The formation of a stable passivating film on the graphite surface is believed to be the reason for the improved cell performance, including cycle life, self-discharge, coulombic efficiency and irreversible capacity. Furthermore, current problems as well as the corresponding research directions are discussed, and the possible application prospects are also proposed.

中图分类号: 

()

[1] Xu K. Chem. Rev., 2004, 104(10): 4303-4417
[2] Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D. J. Power Sources, 2007, 165: 491-499
[3] 李丽 (Li L), 吴锋 (Wu F), 陈人杰 (Chen R J), 吴生先(Wu S X). 高等学校化学学报 (Chemical Journal of Chinese Universities), 2007, 28: 293-296
[4] Videa M, Xu W, Geil B, Marzke R, Angell C A. J. Electrochem. Soc., 2001, 148(12): A1352-A1356
[5] Sasaki Y, Handa M, Kurashima K, Tonuma T, Usami K. J. Electrochem. Soc., 2001, 148(9): 999-1003
[6] Skaarup S, West K, Yde-Andersen S, Koksbang R. 2nd Asian Meeting on Solid State Ionics (Eds. Chowdari B V, Liu Q G, Chen L Q). Singapore: World Scientific Publisher, 1990. 83
[7] Kita F, Sakata H, Kawakami A, Kamizori H, Sonoda T, Nagashima H, Pavlenko N V, Yagupolskii Y L. J. Power Sources, 2001, 97/98: 581-583
[8] Walker C W, Cox J D, Salomon M. J. Electrochem. Soc., 1995, 143(4): L80-L82
[9] Barthel J, Schmid A, Gores H. J. Electrochem. Soc., 2000, 147(1): 21-24
[10] Xu W, Angell C A. Electrochemical and Solid-State Letters, 2000, 3(8): 366-368
[11] Zhang S S, Xu K, Jow T R. J. Power Sources, 2006, 159: 702-707
[12] Wang S, Qiu W H, Guan Y L. Electrochimica Acta, 2007, 52(15): 4907-4910
[13] Yu B T, Qiu W H, Li F S. J. Power Sources, 2007, 166(2): 499-502
[14] Zhang S S, Angell C A. J. Electrochem. Soc., 1996, 143(12): 4047-4053
[15] 韩景立 (Han J L), 刘国庆 (Liu G Q). 电化学(Electro-chemical), 2000, 6(1): 116-118
[16] Sasaki Y, Handa M, Sekiya S, Kurashima K, Usami K. J. Power Sources, 2001, 97/98: 561-565
[17] 李世友(Li S Y), 马培华 (Ma P H), 崔孝玲 (Cui X L), 伊文涛 (Yi W T). 电池 (Battery), 2008, 38(3): 152-154
[18] Taubert C, Fleischahamer M, Wolhfahrt-Megrens M, Wietelmann U, Bubrmester T. J. Electrochem. Soc., 2010, 157: A721-A728
[19] Panitz J, Wietelmann U, Wachtler M. J. Power Sources, 2006, 153(2): 396-401
[20] 付延鲍 (Fu Y B), 马晓华 (Ma X H), 马若彪 (Ma R B), 陈逸民 (Chen Y M) . 电池 (Battery), 2008, 38(1): 11-13
[21] Yang L, Furczon M M, Xiao A, Lucht B L, Zhang Z, Abraham D P. J. Power Sources, 2010, 195: 1698-1705
[22] Zhang S S. Electrochemistry Communications, 2006, 8: 1423-1428
[23] Zhang S S. J. Power Sources, 2007, 163: 713-718
[24] Gao H Q, Zhang Z A, Lai Y Q, Li J, Liu Y X. J. Cent. South Univ. Technol., 2008, 15: 830-834
[25] Zhang Z A, Chen X J, Li F Q, Lai Y Q, Li J, Liu P, Wang X Y. J. Power Sources, 2010, 195: 7397-7402
[26] Fu M H, Huang K L, Liu S Q. Acta Phys. Chim. Sin., 2009, 25(10): 1985-1990
[27] Fu M H, Huang K L, Liu S Q, Liu J S, Li Y K. J. Power Sources, 2010, 195: 862-866
[28] Gao H Q, Lai Y Q, Zhang Z A, Liu Y X. Acta Phys. Chim. Sin., 2009, 25 (5): 905-910
[29] Zhang S S. J. Power Sources, 2008, 180: 586-590
[30] Arai J, Matsuo A, Fujisaki T, Ozaka K. J. Power Sources, 2009, 193: 851-854
[31] Xue Z M, Zhao J F, Ding J, Chen C H. J. Power Sources, 2010, 195: 853-856
[32] Xue Z M, Ji C Q, Zhou W. J. Power Sources, 2010, 195: 3689-3692
[33] Xu M Q, Xiao A, Li W S, Lucbt B L. J. Electrochem. Soc., 2010, 157: A115-A120
[34] Qin Y, Chen Z H, Liu J. Electrochem. Solid-State Lett., 2010, 13: A11-A14
[35] Tokuda H, Watanabe M. Abstracts of the 42nd Battery Symposium in Japan, 2001
[36] Larush-Asraf L, Biton M, Teller H, Zinigrad E, Aurbach D. J. Power Sources, 2004, 174: 400-407
[37] Nakajima T, Koh-icchi D, Koh M. J. Fluorine Chemistry, 1998, (87): 221-227
[38] Smart M C, Ratnakumar B V, Surampudi S. J. Electrochem. Soc., 1999, (146): 486-492
[39] Wrodnigg G H, Wrodnigg T M, Besenhard J O, Winter M. Electrochemistry Communications, 1999, 3/4: 148-150
[40] Wrodnigg G H, Besenhard J O, Winter M. J. Power Sources, 2001, 97/98: 592-594
[41] Ota H, Sato T, Suzuki H. J. Power Sources, 2001, 97/98: 107-113
[42] Chen R J, Wu F, Li L, Guan Y B, Qiu X P, Chen S, Li Y J, Wu S X. J. Power Sources, 2007, 172: 395-403
[43] 姚万浩(Yao W H), 李劼(Li J), 张忠如(Zhang Z R), 高军(Gao J), 王周成(Wang Z C), 杨勇(Yang Y) . 化学学报(Acta Chimica Sinica), 2009, 67(22): 2531-2535ommunications, 1999, 3/4: 148—150

[40] Wrodnigg G H, Besenhard J O, Winter M. J. Power Sources, 2001, 97/98: 592—594

[41] Ota H, Sato T, Suzuki H. J. Power Sources, 2001, 97/98: 107—113

[42] Chen R J, Wu F, Li L, Guan Y B, Qiu X P, Chen S, Li Y J, Wu S X. J. Power Sources, 2007, 172: 395—403

[43] 姚万浩(Yao W H), 李劼(Li J), 张忠如(Zhang Z R), 高军(Gao J), 王周成(Wang Z C), 杨勇(Yang Y) . 化学学报(Acta Chimica Sinica), 2009, 67(22): 2531—2535

 

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[7] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[8] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[9] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[10] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[11] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[12] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[13] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[14] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[15] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.