English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 374-381 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

微型锂离子电池及关键材料的研究

董全峰1*, 宋杰1, 郑明森1, Susanne Jacke2, Wolfram Jaegermann2   

  1. 1. 厦门大学化学化工学院化学系 固体表面物理化学国家重点实验室 厦门 361005;
    2. Surface Science Division, Department of Materials Science, Darmstadt University of Technology, Petersenstr. 23, Darmstadt 64287, Germany
  • 收稿日期:2010-09-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:qfdong@xmu.edu.cn E-mail:qfdong@xmu.edu.cn

Investigation of Microscale Lithium Ion Batteries and the Key Materials

Dong Quanfeng1*, Song Jie1, Zheng Mingsen1, Susanne Jacke2, Wolfram Jaegermann2   

  1. 1. State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
    2. Surface Science Division, Department of Materials Science, Darmstadt University of Technology, Petersenstr.23, Darmstadt 64287, Germany
  • Received:2010-09-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

当前的微型低能耗电子设备以及微机电系统(MEMS)器件大都使用传统的体积较大的外接电源供能,这就限制了这些微型器件的发展和应用。通过设计集成微型电源并将其与这些微器件一体化,可构筑自主微器件系统。本文主要综述了本课题组开展的与微电子技术兼容的全固态微型锂离子电池的研究,包括LiCoO2正极薄膜材料、固态电解质-电极LiPON/LiCoO2界面的研究以及微型锂离子电池制备工艺等。

Most low-power electronic and microelectromechanical system (MEMS) devices designed today use conventionally macroscopic external power supplies. This places limits on the functionality of these microdevices in many applications. An alternative solution is to design power sources at a microscale, which can be integrated together with these microdevices on the same chips. We mainly review the work done in our group on developing and studying of solid state microscale lithium ion batteries compatible with microelectronics with respect to the material system employed, the solid state electrolyte-cathode interface, the batteries’ microfabrication process and performance.

中图分类号: 

()

[1] Koeneman P B, Busch-Vishniac I J, Wood K L. J. Microelectromech. Syst., 1997, 6: 355-362
[2] Guo H, Lal A. Boston Transducers'03: Digest of Technical Papers, Vols 1 and 2, 2003. 36-39
[3] Yen T J, Fang N, Zhang X, Lu G Q, Wang C Y. Applied Physics Letters, 2003, 83: 4056-4058
[4] Fleurial J P, Snyder G J, Ryan M A, Huang C K, Borshchevsky A, Herman J A, Caillat T. Pricm 4: Forth Pacific Rim International Conference on Advanced Materials and Processing, Vols Ⅰ and Ⅱ, 2001. 2937-2940
[5] Dudney N J, Neudecker B J. Current Opinion in Solid State & Materials Science, 1999, 4: 479-482
[6] Chamran F, Yeh Y, Min H S, Dunn B, Kim C J. Journal of Microelectromechanical Systems, 2007, 16: 844-852
[7] Bates J B, Dudney N J, Neudecker B, Ueda A, Evans C D. Solid State Ionics, 2000, 135: 33-45
[8] Neudecker B J, Dudney N J, Bates J B. Journal of the Electrochemical Society, 2000, 147: 517-523
[9] Bates J B, Dudney N J, Neudecker B J, Hart F X, Jun H P, Hackney S A. Journal of the Electrochemical Society, 2000, 147: 59-70
[10] Long J W, Dunn B, Rolison D R, White H S. Chemical Reviews, 2004, 104: 4463-4492
[11] Notten P H L, Roozeboom F, Niessen R A H, Baggetto L. Advanced Materials, 2007, 19: 4564-4567
[12] Baggetto L, Niessen R A H, Roozeboom F, Notten P H L. Advanced Functional Materials, 2008, 18: 1057-1066
[13] Liao C L, Lee Y H, Fung K Z. Journal of Alloys and Compounds, 2007, 436: 303-308
[14] Liao C L, Fung K Z. Journal of Power Sources, 2004, 128: 263-269
[15] Lee W H, Son H C, Moon H S, Kim Y I, Sung S H, Kim J Y, Lee J G, Park J W. Journal of Power Sources, 2000, 89: 102-105
[16] Kim Y L, Lee H Y, Jang S W, Lim S H, Lee S J, Baik H K, Yoon Y S, Lee S M. Electrochimica Acta, 2003, 48: 2593-2597
[17] Akai T, Ota H, Namita H, Yamaguchi S, Nomura M. Physica Scripta, 2005, T115: 408-411
[18] Edstrom K, Gustafsson T, Thomas J O. Electrochimica Acta, 2004, 50: 397-403
[19] Liu N, Li H, Wang Z X, Huang X J, Chen L Q. Electrochemical and Solid State Letters, 2006, 9: A328-A331
[20] Laubach S, Laubach S, Schmidt P C, Ensling D, Schmid S, Jaegermann W, Thissen A, Nikolowski K, Ehrenberg H. Physical Chemistry Chemical Physics, 2009, 11: 3278-3289
[21] Jacke S, Song J, Cherkashinin G, Dimesso L, Jaegermann W. Ionics, 2010, 16: 769-775
[22] Aduru S, Contarini S, Rabalais J W. Journal of Physical Chemistry, 1986, 90: 1683-1688
[23] Brückner R, Chun H U, Goretzki H, Sammet M. Journal of Non-Crystalline Solids, 1980, 42: 49-60
[24] Marchand R, Agliz D, Boukbir L, Quemerais A. Journal of Non-Crystalline Solids, 1988, 103: 35-44
[25] Van Elp J, Wieland J L, Eskes H, Kuiper P, Sawatzky G A. Physical Review B, 1991, 44: 6090-6103
[26] Yu X H, Bates J B, Jellison G E, Hart F X. Journal of the Electrochemical Society, 1997, 144: 524-532
[27] Izumi A, Hirai Y, Tsutsui K, Sokolov N S. Applied Physics Letters, 1995, 67: 2792-2794
[28] Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z. Solid State Ionics, 2005, 176: 2371-2376
[29] Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z. Journal of Power Sources, 2005, 146: 745-748
[30] Iriyama Y, Nishimoto K, Yada C, Abe T, Ogumi Z, Kikuchi K. Journal of the Electrochemical Society, 2006, 153: A821-A825
[31] Song J, Yang X, Zeng S S, Cai M Z, Zhang L T, Dong Q F, Zheng M S, Wu S T, Wu Q H. Journal of Micromechanics and Microengineering, 2009, 19: art. no. 045004
[32] Whitacre J F, West W C, Ratnakumar B V. Journal of the Electrochemical Society, 2003, 150: A1676-A1683

[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[3] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[4] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[5] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[6] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[7] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[8] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[9] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[10] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[11] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[12] 程淑敏, 杜林, 张秀辉, 葛茂发. Langmuir单分子膜在海洋飞沫气溶胶表面特性研究中的应用[J]. 化学进展, 2021, 33(10): 1721-1730.
[13] 薛銮栾, 李会增, 李安, 赵志鹏, 宋延林. 基于各向异性表面的液滴驱动[J]. 化学进展, 2021, 33(1): 78-86.
[14] 袁思成, 林丹, 张曦光, 汪怀远. SLIPS功能表面的制备及应用[J]. 化学进展, 2021, 33(1): 87-96.
[15] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.