English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 357-365 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

硼基锂盐电解质在锂离子电池中的应用

仇卫华*, 阎坤, 连芳, 乔亚非   

  1. 北京科技大学 材料科学与工程学院 100083
  • 收稿日期:2010-10-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:qiuwh@vip.sina.com E-mail:qiuwh@vip.sina.com

Application of Boron-Based Lithium Salt for Li-Ion Battery

Qiu Weihua*, Yan Kun, Lian Fang, Qiao Yafei   

  1. School of Material Science and Engineering, University of Science & Technology Beijing, Beijing 100083, China
  • Received:2010-10-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

电解质材料是锂离子电池的关键材料之一,它直接影响电池的性能。新型硼酸锂盐由于种类繁多且环境友好而越来越引起人们的重视。双草酸硼酸锂(LiBOB)是一种新型的锂盐,具有很好的成膜性能和热稳定性,是一种很有潜力替代现有商品化锂盐LiPF6的物质。本文介绍了近期新型硼基锂盐的发展状况,归纳了LiBOB基电解质的研究概况,综述了影响LiBOB基电解质的因素,讨论了LiBOB与正负极材料的相容性,并对LiBOB基聚合物电解质和LiBOB塑晶电解质的应用进行了介绍。

Electrolyte is considered as one of the key materials to decide the performance of Li-ion batteries. Novel boron-based lithium salts have attracted people’s interests because of its varieties and environmental-friendly property. Lithium bis(oxalato)borate (LiBOB), as one of boron-based lithium salts, is believed to be a candidate for commercial LiPF6 due to its good film-forming property and high thermal stability. In the paper, the new development of boron-based lithium salts is introduced, and LiBOB is also evaluated as lithium salt of electrolyte for Li-ion battery. The main influencing factors of LiBOB-based electrolyte are summarized. Especially, it has focused on the compatibility of LiBOB-based electrolyte with anode and metal oxide cathode. The application of LiBOB-based polymer electrolyte and LiBOB plastic chip electrolyte are introduced.

中图分类号: 

()

[1] Azeez F, Fedkiw P S. Journal of Power Sources, 2010, 195: 7627-7633
[2] Zhang S S, Xu K, Jow T R. J. Solid State Electrochem., 2003, 7: 147-151
[3] Zhang S S, Xu K, Jow T R. Journal of the Electrochemical Society, 2002, 149: A586-A590
[4] Krausea L J, Lamannaa W, Summerfielda J, Englea M, Korbaa G, Locha R, Atanasoski R. Journal of Power Sources, 1997, 68: 320-325
[5] Sloop S E, Pugh J K, Wang S, Kerr J B, Kinoshita K. Electrochem. Solid-State Lett., 2001, 4: A42-A44
[6] Zinigrad E, Larush-Asraf L, Gnanaraj J S, Sprecher M, Aurbach D. Thermochim. Acta, 2005, 438: 184-191
[7] Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y. J. Electrochem. Soc., 2000, 147: 1322-1331
[8] Pasquier A D, Blyr A, Courjal P, Armatucci G, Gerand B, Tarascon J M. J. Electrochem. Soc., 1999, 146: 428-436
[9] 薛照明(Xue Z M), 陈春华(Chen C H). 化学进展(Progress in Chemistry), 2005, 17: 399-405
[10] Sasaki Y, Handa M, Sekiya S, Kurashimaa K, Usamib K. Journal of Power Sources, 2001, 97/98: 561-565
[11] Sasaki Y, Sekiya S, Handa M, Usami K. Journal of Power Sources, 1999, 79: 91-96
[12] Barthel J, Schmid A, Gores H J. Journal of the Electrochemical Society, 2000, 147(1): 21-24
[13] Zhang S S. Electrochem. Commun., 2006, 8: 1423-1428
[14] Ivanov S V, Casteel W J, Pez G P, Ulman M. US 2005064288, 2005
[15] Gopalakrishnan G, Dantsin G, Shi Z, Pearlstein R M, Mammarella C J, Cas-TMteel W J. Air Products StabiLife TM Electrolyte Salts for Application in Lithium Ion Batteries, in: International Conference: 212th Meeting of the Electrochemical Society, Washington DC, 2007
[16] Arai J, Matsuo A, Fujisaki T, Ozawa K. J. Power Sources, 2009, 193: 851-854
[17] Ionica-Bousquet C M, Munoz-Rojas D, Casteel W J, Pearlstein R M. Journal of Power Sources, 2010, 195: 1479-1485
[18] Lischka U, Wietelmanm U, Wegner M. DE 19829030C1, 1999
[19] Xu W, Angell C A. Electrochemical and Solid-State Letters, 2001, 4 (1): E1-E4
[20] Zavalij P Y, Yang S F, Whittingham M S. Acta Cryst, 2003, B59 (6): 753-759
[21] Zavalij P Y, Yang S F, Whittingham M S. Acta Cryst. 2004, B60: 716-724
[22] Xu K. J. Electrochem. Soc., 2008, 155: A733-A738
[23] 黄佳原(Huang J Y). 北京科技大学硕士论文(Master Dissertation of University of Science & Technology Beijing), 2008
[24] Huang J Y, Liu X J, Kang X L, Yu Z X, Xu T T, Qiu W H. Journal of Power Sources, 2009, 189(1): 458-461
[25] Yu Z X, Xu T T, Xing T F, Fan L Z, Lian F, Qiu W H. Journal of Power Sources, 2010, 195(13): 4285-4289
[26] Ping P, Wang Q S, Sun J H, Feng X Y, Chen C H. Journal of Power Sources, 2011, 196(2): 776-783
[27] Azeez F, Fedkiw P S. Journal of Power Sources, 2010, 195: 7627-7633
[28] Zhang Z, Dong J, Wet R, Amine K. Journal of Power Sources, 2010, 195: 6062-6068
[29] Dong J, Zhang Z, Wet R, Kusachi Y, Amine K. Journal of Power Sources, 2011, 196: 2255-2259
[30] Yang L, Furczon M M, Xiao A, Lucht B L, Zhang Z, Abraham D P. Journal of Power Sources, 2010, 195: 1698-1705
[31] Xu K, Deveney B, Nechev K, Lam Y, Jow T R. J. Electrochem. Soc., 2008, 155: 959-964
[32] Zhuang G V, Xu K, Jow T R, Ross P N J. Electrochemical and Solid-State Letters, 2004, 7 (8): A224-A227
[33] Xu K, Lee U, Zhang S S. Electrochemical and Solid-State Letters, 2004, 7 (9): A273-A277
[34] Jiang J W, Dahn J R. Electrochimica Acta, 2004, 49: 4599-4604
[35] Hassouna J, Wachtlerb M, Wohlfahrt-Mehrensb M, Scrosatia B. Journal of Power Sources, 2011, 196: 349-354
[36] Chouvin J, Olivier-Fourcade J, Jumas J C, Simon B, Biensan P, Fernandez Madrigal F J, Tirado J L, Perez Vicente C. J. Electroanal. Chem., 2000, 494: 136-146
[37] Choi N S, Yew K H, Kim H, Kim S S, Choi W U. Journal of Power Sources, 2007, 172(1): 404-409
[38] Li M Q, Qu M Z, He X Y, Yu Z L. Electrochimica Acta, 2009, 54: 4506-4513
[39] Panitz J C, Wietelmann U, Wachtler M, Strbele S, Wohlfahrt-Mehrens M. Journal of Power Sources, 2006, 153(1/2): 396-401
[40] Markovsky B, Amalraj F E, Gottlieb H, Gofer Y, Martha S, Aurbach D. Journal of the Electrochemical Society, 2010, 157(4): A423-A429
[41] Zinigrad E, Larush-Asraf L, Salitra G, Sprecher M, Aurbach D. Thermochimica Acta, 2007, 45(7): 64-69
[42] Xu K, Deveney B, Nechev K, Lam Y, Jow T R. Electrochem. Solid-State Lett., 2002, 5: A26-A29
[43] Mestre-Aizprua F, Hamelet S, Masquelier C, Palacín M R. Journal of Power Sources, 2010, 195: 6897-6901
[44] Jiang J, Dahn J R. Electrochemistry Communications, 2004, 6 (1): 39-43
[45] Hyung Y, Visser D, Henriksen G. 204th Meeting of the Electrochemical Society. Orlando, 2003
[46] Tubert C, Fleischhammer M, Wohlfahrt-Mehrens M, Wietelmann U, Buhrmester T. Journal of the Electrochemical Society, 2010, 157: A721-A728
[47] Saruwatari H, Kuboki T, Kishi T, Mikoshiba S, Takami N. Journal of Power Sources, 2010, 195: 1495-1499
[48] Ghosh A, Wang C S, Kofinas P. Journal of the Electrochemical Society, 2010, 157(7): A846-A849
[49] 禹筱元(Yu X Y), 肖敏(Xiao M), 王拴紧(Wang S J), 董先明(Dong X M), 孟跃中(Meng Y Z). 高分子材料科学与工程 (Polymer Materials Science and Enginering), 2010, 26 (4): 82-88
[50] Alarco P J, Abu-Lebdeh Y, Abouimrane A, Armand M. Nature materials, 2004, 3: 476-481
[51] A· 阿布以马兰(Abouimrane A), I·戴维森(Davidson I), CN 101682083A, 2010
[52] Xie B, Li L F, Li H, Chen L Q. Solid State Ionics, 2009, 180(9/10): 688-692

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[5] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[6] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[7] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[8] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[9] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[10] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[11] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[12] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[13] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[14] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[15] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.