English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 349-356 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子二次电池界面过程的红外光谱研究

李君涛, 方俊川, 苏航, 孙世刚*   

  1. 厦门大学能源研究院 化学化工学院 固体表面物理化学国家重点实验室 厦门 361005
  • 收稿日期:2010-09-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:sgsun@xmu.edu.cn E-mail:sgsun@xmu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21003102,20833005,21021002)和国家重点基础研究发展计划(973)项目(No.2009CB220102)资助

Interfacial Processes of Lithium Ion Batteries by FTIR Spectroscopy

Li Juntao, Fang Junchuan, Su Hang, Sun Shigang*   

  1. School of Energy Research, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
  • Received:2010-09-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

锂离子二次电池界面反应主要包括锂离子嵌入/脱出、溶剂化/去溶剂化、电解液分解和固体电解质界面膜的形成与变化等。这些过程直接影响锂离子二次电池能源转换和储存的效率以及安全性能。运用红外光谱从分子水平上认识锂离子二次电池的各种界面反应过程并阐述其反应机理,有助于设计锂离子二次电池新体系、提升其性能并发展非水电解质理论。本文综述了锂离子二次电池界面过程的红外光谱(FTIRS)研究的最新进展,重点阐述锂离子二次电池研究中非原位红外光谱、原位红外反射光谱和原位红外透射光谱方法的建立及其对界面反应的分析。

Lithium-ion batteries (LIBs) are one of the important electrochemical power sources for low- or zero-emission hybrid electrical and electrical vehicles, energy-efficient cargo ships and locomotives, and aerospace in the modern society. The difficulties in mastering the electrode/electrolyte interface have slowed down the progress of LIBs. Interfacial processes of lithium ion batteries include mainly insertion/extraction of lithium ion, solvation/desolvation of lithium with solvents, formation and variation of solid electrolyte interphase (SEI) layer, and decomposition of electrolyte. Interfacial processes directly affect the efficiency of electrochemical energy conversion and storage, such as the cycling ability, the lifetime and the reversible capacity, as well as the safety issue of lithium ion batteries. The characterization of the interface processes at a molecular level by FTIR spectroscopy is one of the key subjects, as it is helpful for the improvement the performance of lithium ion batteries and development of non-aqueous theory. Recent progresses about the application of FTIR spectroscopy in lithium ion batteries are reviewed. This review put emphasis on: (a) the characterization of chemical composition and variation of SEI layer on cycled or aged electrode materials by ex situ FTIR spectroscopy, and (b) the investigation of decomposition of electrolyte, formation of SEI layer and the insertion/extraction of lithium ion by both in-situ FTIR reflection spectroscopy and in situ FTIR transmission spectroscopy.

中图分类号: 

()

[1] Scrosati B. Nature, 1995, 373: 557-558
[2] Tarascon J M, Armand M. Nature, 2001, 414: 359-367
[3] Kang B, Ceder G. Nature, 2009, 458: 190-193
[4] Scrosati B, Garche J. J. Power Scours, 2010, 195: 2419-2430
[5] Armand M, Tarascon J M. Nature, 2008, 451: 652-657
[6] Xu K. Chem. Rev., 2004, 104: 4303-4417
[7] Li J T, Swiatowska J, Seyeux A, Huang L, Maurice V, Sun S G. Marcus P. J. Power Source, 2010, 195: 8251-8257
[8] 陈卫(Chen W), 孙世刚(Sun S G). 光谱学与光谱分析(Spectroscopy and Spectral Analysis), 2002, 22: 504-514
[9] Peled E J. Electrochem Soc., 1979, 126: 2047-2051
[10] 庄全超(Zhuang Q C), 徐守东(Xu S D), 邱祥云(Qiu X Y), 崔永丽(Cui Y L), 方亮(Fang L), 孙世刚(Sun S G). 化学进展(Progress in Chemistry), 2010, 22: 1044-1057
[11] 倪江锋(Ni J F), 周恒辉(Zhou H H), 陈继涛(Chen X T), 苏光耀(Su G Y). 化学进展(Progress in Chemistry), 2004, 16: 335-342
[12] Aurbach D, Weissman I, Schechter A. Langmiur, 1996, 12: 3991-4007
[13] Yang C R, Wang Y Y, Wan C C. J. Power Sources, 1998, 72: 66-70
[14] 李君涛(Li J T). 厦门大学博士论文(Doctoral Dissertation of Xiamen University), 2009
[15] Naji A, Ghanbaja J, Humbert B, Willmann P, Billaud D. J. Power Sources, 1996, 63: 33-39
[16] Aurbach D, Markovsky B, Shechter A, Ein-E1i Y. J. Electrochem. Soc., 1996, 143: 3809-3820
[17] Aurbach D, Markovsky B, Rodkin A, Cojocaru M, Levi E, Kim H. J. Electrochim. Acta, 2002, 47: 1899-1911
[18] Lee S B, Pyun S I. Carbon, 2002, 40: 2333-2339
[19] Aurbach D, Markovsky B, Weissman I, Levi E, Ein-Eli Y. Electrochim. Acta, 1999, 45: 67-86
[20] Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, Granot E. J. Power Source, 1997, 68: 91-98
[21] Zhuang G R V, Xu K, Yang H, Jow T R, Ross P N. J. Phys. Chem. B, 2005, 109: 17567-17573
[22] Chusid O Y, Ein-Ely Y, Aurbach D. J. Power Sources, 1993, 43/44: 47-64
[23] Hu Y S, Kong W H, Li H, Huang X J, Chen L Q. Electrochem. Commun., 2OO4, 6: 126-131
[24] Aurbach D, Granot E. Electrochim. Acta, 1997, 42: 697-718
[25] Li J Z, Li H, Wang Z X, Huang X J, Chen L Q. J. Power Sources, 1999, 81/82: 346-351
[26] Li J T, Maurice V, Swiatowska-Mrowiecka J, Seyeux A, Zanna S, Klein L, Sun S G, Marcus P. Electrochim. Acta, 2009, 54: 3700-3707
[27] Song S W, Baek S W. Electrochim. Acta, 2009, 54: 1312-1318
[28] Li J T, Chen S R, Ke F S, Wei G Z, Huang L, Sun S G. J. Electroanal. Chem., 2010, 694: 171-176
[29] Ostrovskii D, Ronci F, Scrosati B, Jacobsson P. J. Power Sources, 2001, 103: 10-17
[30] Martha S K, Markevich E, Burgel V, Salitra G, Zinigrad E, Markovsky B, Sclar H, Pramovich Z, Heik O, Aurbach D. Exnar I, Buqa H, Drezen T, Semrau G, Schmidt M. Kovacheva D, Saliyski N. J. Power Sources, 2009, 189: 288-296
[31] Kerlau M, Kostecki R. J. Electrochem. Soc., 2006, 153: A1644-A1648
[32] Xu H Y, Xie S, Wang Q Y, Yao X L, Wang Q S, Chen C H. Electrochim. Acta, 2006, 52: 636-642
[33] Wu C, Bai Y, Wu F. J. Power Sources, 2009, 189: 89-94
[34] Bewick A, Kunimatsu K. Surf. Sci., 1980, 101: 131-138
[35] Bewick A, Kunimatsu K, Pons B S. Electrochim. Acta, 1980, 25: 465-468
[36] Sun S G, Christensen P A, Wieckowski A. In-situ Spectroscopic Studies of Adsorption at the Electrode and Electrocatalysis. Amsterdam: Elsevier, 2007. 1-273
[37] Santner H J, Korepp C, Winter M, Besenhard J O, Moller K C. Anal. Bioanal. Chem., 2004, 379: 266-271
[38] Neff H, Lange P, Roe D K, Sass J K. J. Electroanal. Chem., 1983, 150: 513-519
[39] Lange P, Glaw V, Neff H, Piltz E, Sass J K. Vacuum, 1983, 33: 763-766
[40] Ashley K, Pons S. Chem. Rev., 1988, 88: 673-695
[41] Ikezawa Y, Ariga T. Electrochim. Acta, 2007, 52: 2710-2715
[42] Matsui M, Dokko K, Kanamura K. J. Power Sources, 2008, 177: 184-193
[43] Novak P, Goers D, Hardwick L, Holzapfel M, Scheifele W, Ufheil J, Wursig A. J. Power Sources, 2005, 146: 15-20
[44] Li J T, Chen S R, Fan X Y, Huang L, Sun S G. Langmuir, 2007, 23: 13174-13180
[45] Morigaki K. J. Power Sources, 2002, 104: 13-23
[46] Morigaki K, Ohta A. J. Power Sources, 1998, 76: 159-166
[47] Morigaki K. J. Power Sources, 2002, 103: 253-264
[48] Baek S W, Hong S J, Kim D W, Song S W. J. Power Sources, 2009, 189: 660-664
[49] Matsui M, Dokko K, Kanamura K. J. Electrochem. Soc., 2010, 157: A121-A129
[50] Aurbach D, Moshkovich M, Cohen Y, Schechter A. Langmuir, 1999, 15: 2947-2960
[51] Wang Y X, Balbuena P B. Int. J. Quantum Chem., 2005, 102: 724-733
[52] Masia M, Probst M, Rey R. J. Phys. Chem. B, 2004, 108: 2016-2027
[53] Yeager H L, Fedyk J D, Parker R J. J. Phys. Chem., 1973, 77: 2407-2410
[54] Burba C M, Frech R. Electrochim. Acta, 2006, 52: 780-785
[55] Sharabi R, Markevich E, Borgel V, Salitra G, Aurbach D, Semrau G, Schmidt M A, Electrochem. Solid-State Lett., 2010, 13: A32-A35

[1] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[2] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[3] 张进, 蔡文生, 邵学广. 近红外光谱模型转移新算法[J]. 化学进展, 2017, 29(8): 902-910.
[4] 樊梦丽, 赵越, 刘言, 蔡文生, 邵学广. 近红外光谱水光谱组学[J]. 化学进展, 2015, 27(2/3): 242-250.
[5] 宋建, 庄巍*. 蛋白质二维红外相干光谱的理论研究[J]. 化学进展, 2012, 24(06): 1065-1081.
[6] 李伟, 罗磊, 张淑贞. 应用先进光谱技术研究无机离子的环境界面化学[J]. 化学进展, 2011, 23(12): 2576-2587.
[7] 时静雅,武培怡. 傅立叶变换红外光谱技术在超临界CO2作用聚合物体系中的应用[J]. 化学进展, 2009, 21(05): 1023-1033.
[8] 江艳,武培怡. 大豆蛋白的中红外和近红外光谱研究*[J]. 化学进展, 2009, 21(04): 705-714.
[9] 孙胜童,汤慧,武培怡. 液晶聚合物材料的红外光谱表征*[J]. 化学进展, 2009, 21(01): 182-199.
[10] 江艳,武培怡. 近红外光谱在蛋白质和含酰胺基团聚合物研究中的应用*[J]. 化学进展, 2008, 20(12): 2021-2033.
[11] 许建华,陈清林,纪红兵. 原位漫反射红外光谱技术用于气固催化反应机理的研究*[J]. 化学进展, 2008, 20(06): 811-820.
[12] 江艳,沈怡,武培怡. ATR-FTIR光谱技术在聚合物膜研究中的应用[J]. 化学进展, 2007, 19(01): 173-185.
[13] 孙辉,滕启文,吴师. 碳笼氧化物的结构和谱学性质[J]. 化学进展, 2006, 18(11): 1446-1451.
[14] 黄强,隆泉,郑保忠. FTIR分析在固相有机合成中的应用*[J]. 化学进展, 2005, 17(05): 889-896.
[15] 褚小立,袁洪福,陆婉珍. 近红外分析中光谱预处理及波长选择方法进展与应用[J]. 化学进展, 2004, 16(04): 528-.