English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 318-327 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池负极硅基材料

陶占良, 王洪波, 陈军*   

  1. 南开大学先进能源材料化学教育部重点实验室 天津 300071
  • 收稿日期:2010-09-01 修回日期:2010-10-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:chenabc@nankai.edu.cn E-mail:chenabc@nankai.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21076108)、教育部创新团队项目(No.IRT0927)和天津市应用基础及前沿技术研究计划项目(No.08JCZDJC21300,10JCYBJC08400)资助

Si-Based Materials as the Anode of Lithium-Ion Batteries

Tao Zhanliang, Wang Hongbo, Chen Jun*   

  1. Key Laboratory of Advanced Energy Material Chemistry of Ministry of Education, Nankai University, Tianjin 300071, China
  • Received:2010-09-01 Revised:2010-10-01 Online:2011-03-24 Published:2011-01-26

硅基材料由于其高电化学容量是一种非常有发展前途的锂离子电池负极材料,但其在充放电过程中体积变化大、循环寿命差、首次库仑效率低等是阻碍其商业化的主要问题。本文综述了硅在脱嵌锂时晶体结构及表/界面的变化,以及改善其电化学性能方面的研究进展,并阐述其作为锂离子电池负极材料的研究前景。

Silicon-based materials are promising anode materials for lithium-ion batteries (LIBs) due to their high-energy capacity. However, the commercialization of silicon-based materials as the anode of LIBs has been hindered by the huge volume change, poor cycle life and low initial coulombic efficiency during the charge/discharge process. This article reviews the change of both the crystal structure and the surface/interface of Si-based material during the intercalation/deintercalation of lithium, and the methods improving the electrochemical performance. In addition, the prospects of silicon-based materials as the anode of LIBs are also discussed.

中图分类号: 

()

[1] Armand M, Tarascon J M. Nature, 2008, 451: 652-657
[2] Tarascon J M, Armand M. Nature, 2001, 414: 359-367
[3] 任建国(Ren J G), 王科(Wang K), 何向明(He X M)等. 化学进展(Progress in Chemistry), 2005, 17: 597-603
[4] 陈敬波(Chen J B), 赵海雷(Zhao H L), 何见超(He J C), 王梦微(Wang M W). 化学进展(Progress in Chemistry), 2009, 21: 2115-2122
[5] Sharma R A, Seefurth R N. J. Electrochem. Soc., 1976, 123: 1763-1768
[6] Boukamp B A, Lesh G C, Huggins R A. J. Electrochem. Soc., 1981, 128: 725-729
[7] Winter M, Besenhard J O, Spahr M E, Novak P. Adv. Mater., 1998, 10: 725-763
[8] Hatchard T D, Dahn J R. J. Electrochem. Soc., 2004, 151: A838-A842
[9] Li H, Huang X, Chen L, et al. Electrochem. Solid-State Lett., 1999, 2: 547-549
[10] 黄学杰(Huang X J), 李泓(Li H), 王庆(Wang Q)等. 物理(Physics), 2002, 31: 444-449
[11] Key B, Bhattacharyya R, Morcrette M, et al. J. Am. Chem. Soc., 2009, 131: 9239-9249
[12] Lee Y M, Lee J Y, Shim H T, et al. J. Electrochem. Soc., 2007, 154: A515-A519
[13] 文钟晟(Wen Z S), 王可(Wang K), 解晶莹(Xie J Y). 无机材料学报(Journal of Inorganic Materials), 2007, 22: 437-441
[14] Chan C K, Ruffo R, Hong S S, Cui Y. J. Power Sources, 2009, 189: 1132-1140
[15] Yen Y C, Chao S C, Wu H C, Wu N L. J. Electrochem. Soc., 2009, 156: A95-A102
[16] Chen J, Cheng F Y. Acc. Chem. Res., 2009, 42: 713-723
[17] Guo Y G, Hu J S, Wan L J. Adv. Mater., 2008, 20: 2878-2887
[18] Chan C K, Peng H L, Liu G, et al. Nat. Nanotechnol., 2008, 3: 31-35
[19] Chen H X, Dong Z X, Fu Y P, Yang Y. J. Solid State Electrochem., 2010, 14: 1829-1834
[20] Cui L F, Ruffo R, Chan C K, et al. Nano Lett., 2009, 9: 491-495
[21] Park M H, Kim M G, Joo J, et al. Nano Lett., 2009, 9: 3844-3847
[22] Song T, Xia J L, Lee J H, et al. Nano Lett., 2010, 10: 1710-1716
[23] Ma H, Cheng F Y, Chen J, et al. Adv. Mater., 2007, 19: 4067-4070
[24] Kim H, Han B, Choo J, Cho J. Angew. Chem. Int. Ed., 2008, 47: 10151-10154
[25] Kim H, Seo M, Park M H, et al. Angew. Chem. Int. Ed., 2010, 49: 2146-2149
[26] Aurbach D, Nimberger A, Markovsky B, et al. Chem. Mater., 2002, 14: 4155-4163
[27] Bourderau S, Brousse T, Schleich D M. J. Power Sources, 1999, 81/82: 233-236
[28] Takamura T, Ohara S, Uehara M, et al. J. Power Sources, 2004, 129: 96-100
[29] Maranchi J P, Hepp A F, Kumta P N. Electrochem. Solid-State Lett., 2003, 6: A198-A201
[30] Peng B, Cheng F Y, Tao Z L, Chen J. J. Chem. Phys., 2010, 133: art. no. 034701
[31] Lee K L, Jung J Y, Lee S W, et al. J. Power Sources, 2004, 129: 270-274
[32] Notten P H L, Roozeboom F, Niessen R A H, Baggetto L. Adv. Mater., 2007, 19: 4564-4567
[33] Xiao J, Xu W, Wang D Y, et al. J. Electrochem. Soc., 2010, 157: A1047-A1051
[34] Cui L F, Yang Y, Hsu C M, Cui Y. Nano Lett., 2009, 9: 3370-3374
[35] Ruffo R, Hong S S, Chan C K, et al. J. Phys. Chem. C, 2009, 113: 11390-11398
[36] Wang L, Ding C X, Zhang L C, et al. J. Power Sources, 2010, 195: 5052-5056
[37] Huang R, Fan X, Shen W C, Zhu J. Appl. Phys. Lett., 2009, 95: art. no. 133119
[38] Arie A A, Song J O, Lee J K. Mater. Chem. Phys., 2009, 113: 249-254
[39] Arie A A, Chang W, Lee J K. J. Solid State Electrochem., 2010, 14: 51-56
[40] Cui L F, Hu L B, Choi J W, Cui Y. ACS Nano, 2010, 4: 3671-3678
[41] Rong J P, Masarapu C, Ni J, et al. ACS Nano, 2010, 4: 4683-4690
[42] Lee J, Bae J, Heo J, et al. J. Electrochem. Soc., 2009, 156: A905-A910
[43] Si Q, Hanai K, Ichikawa T, et al. J. Power Sources, 2010, 195: 1720-1725
[44] Si Q, Hanai K, Imanishi N, et al. J. Power Sources, 2009, 189: 761-765
[45] Wang X Y, Wen Z Y, Liu Y, Wu X W. Electrochim. Acta, 2009, 54: 4662-4667
[46] Yang X L, Zhang P C, Wen Z Y, Zhang L L. J. Alloys Compd., 2010, 496: 403-406
[47] Ng S H, Wang J Z, Wexler D, et al. J. Phys. Chem. C, 2007, 111: 11131-11138
[48] Martin C, Alias M, Christien F, et al. Adv. Mater., 2009, 21: 4735-4741
[49] Lee J K, Smith K B, Hayner C M, Kung H H. Chem. Commun., 2010, 46: 2025-2027
[50] Esmanski A, Ozin G A. Adv. Funct. Mater., 2009, 19: 1999-2010
[51] Guo J C, Chen X L, Wang C S. J. Mater. Chem., 2010, 20: 5035-5040
[52] Magasinski A, Dixon P, Hertzberg B, et al. Nature Mater., 2010, 9: 353-358
[53] Kim J W, Ryu J H, Lee K T, et al. J. Power Sources, 2005, 147: 227-233
[54] Chiu K F, Lin K M, Lin H C, et al. J. Electrochem. Soc., 2008, 155: A623-A627
[55] Wang G X, Sun L, Bradhurst D H, et al. J. Power Sources, 2000, 88: 278-281
[56] Liu W R, Wu N L, Shieh D T, et al. J. Electrochem. Soc., 2007, 154: A97-A102
[57] Yan J M, Huang H Z, Zhang J, Yang Y. J. Power Sources, 2008, 175: 547-552
[58] Wang K, He X M, Wang L, et al. Solid State Ionics, 2007, 178: 115-118
[59] Zhang T, Gao J, Zhang H P, et al. Electrochem. Commun., 2007, 9: 886-890
[60] Hu Y S, Cakan R D, Titirici M M, et al. Angew. Chem. Int. Ed., 2008, 47: 1645-1649
[61] Kim I S, Blomgren G E, Kumta P N. J. Electrochem. Soc., 2005, 152: A248-A254
[62] Chen Z H, Christensen L, Dahn J R. Electrochem. Commun., 2003, 5: 919-923
[63] Li J, Lewis R B, Dahn J R. Solid-State Lett., 2007, 10: A17-A20
[64] Hochgatterer N S, Schweiger M R, Koller S, et al. Electrochem. Solid-State Lett., 2008, 11: A76-A80
[65] Choi N S, Yew K H, Choi W U, Kim S S. J. Power Sources, 2008, 177: 590-594
[66] Li M Q, Qu M Z, He X Y, Yu Z L. Electrochim. Acta, 2009, 54: 4506-4513
[67] Choi N S, Yew K H, Lee K Y, et al. J. Power Sources, 2006, 161: 1254-1259
[68] Nguyen C C, Song S W. Electrochim. Acta, 2010, 55: 3026-3033

[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[4] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[5] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[6] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[7] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[8] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[9] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[10] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[11] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[12] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[13] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[14] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[15] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
阅读次数
全文


摘要

锂离子电池负极硅基材料