English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 302-309 前一篇   后一篇

• 综述与评论 •

自由基聚合物——一类新颖的高性能二次电池材料

赵瑞瑞, 朱利敏, 杨汉西*   

  1. 武汉大学化学与分子科学学院 武汉 430072
  • 收稿日期:2010-09-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:hxyang@whu.edu.cn E-mail:hxyang@whu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20973132)资助

Radical Polymer——A New Class of High Performance Electrode Materials for Rechargeable Batteries

Zhao Ruirui, Zhu Limin, Yang Hanxi*   

  1. College of Chemistry and Molecule Science, Wuhan University, Wuhan 430072, China
  • Received:2010-09-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

自由基聚合物是一种新近发展迅速的电荷储存与传输材料,在电化学超级电容器、光电转换器件、二次电池等方面具有诱人的应用前景。本文着重介绍这类新颖电极材料的结构特征、电化学反应机制,以及国内外的研究发展现状;分析了采用自由基聚合物构建新型二次电池的技术途径和发展趋势。

Radical polymers are aliphatic or nonconjugated polymers bearing organic redox radicals as pendant groups on their structural unit. These radical sites populated in large densities allow the electrochemical redox reaction taking place through the polymer layer by redox gradient-driven electron transport and behave as electroactive centers. Since radical polymer can be designed with a large population of redox radicals and electron exchange between the radical sites are usually very fast, they are considered as a new class of charge storage and transport materials with the possibility to provide high electrical storage capacity and high charge-discharge rate capability. Particularly, these polymers are completely organic with the advantage of being fully substainable, they are ideal for the displacement of inorganic materials in diverse applications such as electrochemical supercapacitors, photovoltaic cells and rechargeable batteries.This paper is intended to review the structural characteristics, electrochemical reaction mechanisms and current development status of the radical polymers as electode-active materials, with focus on the technological challenges and ongoing research strategies of these novel electrode materials as used for construction of high capacity and high rate rechargeable batteries. Also, the problems in the development of radical polymer electrodes are discussed.

中图分类号: 

()

[1] Scrosati B. Nature, 1995, 373: 557-558
[2] Freedom CAR and Fuel Partnership, the United States Advanced Battery Consortium, 2005, 1-11
[3] Amine K, Liu J, Belharouak I, Kang H S, Henriksen G. J. Power Sources, 2005, 146: 111-115
[4] Padhi K A, Nanjundaswamy S K, Masquelier C, Okada S, Goodenough B J. J. Electrochem. Soc., 1997, 144: 1609-1613
[5] Huang H, Yin S C, Nazar F L. Electrochem. Solid State Lett., 2001, 4: A170-A172
[6] Ravet N, Chouinard Y, Magnan F J, Besner S, Gauthier M, Armand M. J. Power Sources, 2001, 97: 503-507
[7] Aricó A S, Bruce P, Scrosati B, Tarascon J M, Schalkwijk W V. Nat. Mater., 2005, 4: 366-377
[8] Desilvestro J, Scheifele W, Hass O. J. Electrochem. Soc., 1992, 139: 2727-2736
[9] Taguchi S, Tanaka T. J. Power Sources, 1987, 20: 249-252
[10] Dell R M, Moseley P T. J. Power Sources, 1985, 16: 179-191
[11] Satoh M, Tabata M, Kaneto K, Yoshino K. Jpn. J. Appl. Phys., Part 2 Lett. 7, 1995, L73
[12] Kaneto K, Kohno Y, Yoshino K, Inuishi Y. J. Chem. Soc. Chem. Commun., 1983, 382-383
[13] Sato M, Tanaka S, Kaeriyama K. J. Chem. Soc. Chem. Commun., 1985, 713-714
[14] Nakahara K, Iwasa S, Sato M, Morioka Y, Iriyama J, Suguro M, Hasegawa E. Chem. Phys. Lett., 2002, 351-354
[15] Oyaizu K, Nishide H. Adv. Mater., 2009, 21: 2339-2344
[16] Suga T, Pu Y J, Oyaizu K, Nishide H. Bull. Chem. Soc. Jpn., 2004, 77: 2203-2204
[17] Oyaizu K, Suga T, Yoshimura K, Nishide H. Macromolecules, 2008, 41: 6646-6652
[18] Takahashi Y, Hayashi N, Oyaizu K, Honda K, Nishide H. Polym. J., 2008, 40: 763-767
[19] Nishide H, Iwasa S, Nakahara K, Pu Y J, Suga K, Nakahara K, Satoh M. Electrochimica Acta, 2004, 50: 827-831
[20] Yonekuta Y, Oyaizu K, Nishide H. Chem. Lett., 2007, 36: 866-867
[21] Oyaizu K, Ando Y, Konishi H, Nishide H. J. Am. Chem. Soc., 2008, 130: 14459-14461
[22] Nakahara K, Iriyama J, Iwasa S, Suguro M, Cairns E J. J. Power Sources, 2007, 165: 398-402
[23] Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns E J. J. Power Sources, 2007, 163: 1110-1113
[24] Nakahara K, Iriyama J, Iwasa S, Suguro M, Satoh M, Cairns E J. J. Power Sources, 2007, 165: 870-873
[25] Kim J K, Cheruvally G, Ahn J H, Seo Y H, Choi D S, Lee S H, Song C E. J. Ind. Eng. Chem., 2008, 14: 371-376
[26] Kim J K, Cheruvally G, Choi J W, Ahn J H, Lee S H, Choi D S, Song C E. Solid States Ionics, 2007, 178: 1546-1551
[27] Kim J K, Ahn J H, Cheruvally G, Chauhan G S, Choi J W, Kim D S, Ahn H J, Lee S H, Song C E. Met. Mater. Int., 2009, 15: 77-82
[28] Komaba S, Tanaka T, Ozeki T, Taki T, Watanabe H, Tachikawa H. J. Power Sources, 2010, 195: 6212-6217
[29] Koshika K, Sano N, Oyaizu K, Nishide H. Chem. Commun., 2009, 836-838
[30] Koshika K, Sano N, Oyaizu K, Nishide H. Macromol. Chem. Phys., 2009, 210: 1989-1995
[31] Yashihara S, Isozumi H, Kasai M, Nishide H. J. Phys. Chem. B, 2010, 114: 8335-8340
[32] Nishide H, Oyaizu K. Science, 2008, 319: 737-738
[33] Bugnon L, Morton C J H, Novak P, Vetter J, Nesvadba P. Chem. Mater., 2007, 19: 2910-2914
[34] Suguro M, Iwasa S, Kusachi Y, Morioka Y, Nakahara K. Macromol. Rapid Commun., 2007, 28: 1929-1933
[35] Suguro M, Iwasa S, Nakahara K. Macromol. Rapid Commun., 2008, 29: 1635-1639
[36] Suga T, Yoshimura K, Nishide H. Macromol. Symp., 2006, 245/246: 416-422
[37] Suga T, Pu Y J, Kasatori S, Nishide H. Macromolecules, 2007, 40: 3167-3173
[38] Qu J Q, Katsumata T, Satoh M, Masuda T. Chem. Eur. J., 2007, 13: 7965-7973
[39] Katsumata T, Satoh M, Wada J, Shiotsuki M, Sanda F, Masuda T. Macromol. Rapid Commun., 2006, 27: 1206-1211
[40] Katsumata T, Qu J Q, Shiotsuki M, Satoh M, Masuda T. Macromolecules, 2008, 41: 1175-1183
[41] Suga T, Konishi H, Nishide H. Chem. Commun., 2007, 1730-1732
[42] Nesvadba P, Bugnon L, Maire P, Novák P. Chem. Mater., 2010, 22: 783-788
[43] Lee S H, Kim J K, Cheruvally G, Choi J W, Ahn J H, Chauhan G S, Song C E. J. Power Sources, 2008, 184: 503-507
[44] Suguro M, Mori A, Iwasa S, Nakahara K, Nakano K. Macromol. Chem. Phys., 2009, 210: 1402-1407
[45] Feng J K, Cao Y L, Ai X P, Yang H X. J. Power Sources, 2008, 177: 199-204
[46] Suga T, Ohshiro H, Sugita S, Oyaizu K, Nishide H. Adv. Mater., 2009, 21: 1627-1630
[47] Nakahara K, Iwasa S, Iriyama J, Morioka Y, Suguro M, Satoh M, Cairns E J. Electrochimica Acta, 2006, 52: 921-927

[1] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[2] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[3] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[4] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[5] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[6] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[7] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[8] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[9] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[10] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
[11] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[12] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[13] 姚送送, 李诺, 叶红齐, 韩凯*. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7): 932-946.
[14] 池滨, 侯三英, 刘广智, 廖世军*. 高性能高功率密度质子交换膜燃料电池膜电极[J]. 化学进展, 2018, 30(2/3): 243-251.
[15] 赵云, 金玉红, 王莉, 田光宇, 何向明. 自组装多级结构在锂离子电池中的应用[J]. 化学进展, 2018, 30(11): 1761-1769.