English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 275-283 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池电极材料选择

张临超, 陈春华*   

  1. 中国科学院能量转换材料重点实验室 中国科学技术大学材料科学与工程系 合肥 230026
  • 收稿日期:2010-09-01 修回日期:2010-11-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:cchchen@ustc.edu.cn E-mail:cchchen@ustc.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20971117,10979049)资助

Electrode Materials for Lithium Ion Battery

Zhang Linchao, Chen Chunhua*   

  1. CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
  • Received:2010-09-01 Revised:2010-11-01 Online:2011-03-24 Published:2011-01-26

商用锂离子电池发展至今已有20年,为了满足不同方面的社会需求,人们迫切需要新型锂离子电池电极材料。本文首先简要介绍了锂离子电池的相关知识,随后对多种新型锂离子电池正负极材料的制备、改进方法及电化学性能做了详细介绍,最后对各种电极材料的优缺点进行了简要的总结。本文还对锂离子电池在未来的应用进行了展望,以期待锂离子电池更好地为人类服务。

It has been 20 years since lithium ion battery appeared as a commercial product. Different kinds of new electrode materials are urgently needed to meet the demands of the society. In this review, some knowledge about lithium ion battery is first given. Then we focus on several new positive/negative electrode materials reported up to date. When they were used as lithium ion battery electrode materials, how they are synthesized, the main improvement methods and their electrochemical performance will be presented. Finally, we give a short summary of the advantages/disadvantages of these new electrode materials. Furthermore, an outlook for the potential applications of lithium ion batteries in the future is proposed.

中图分类号: 

()

[1] Nagaura T, Tozawa K. Prog. Batteries Solar Cells, 1990, 9: 209
[2] Padhi A K, Nanjundaswamy K S, Goodenough J B. J. Electrochem. Soc., 1997, 144: 1188-1194
[3] 芮先宏(Rui X H). 中国科学技术大学硕士论文(Master Dissertation of University of Science and Technology of China), 2010
[4] 芮先宏(Rui X H), 李超(Li C), 刘珏(Liu J), 陈春华(Chen C H). 化学与物理电源系统(Chemical and Physical Power Sources), 2009, 12: 150-160
[5] Rui X H, Li C, Chen C H. Electrochim. Acta, 2009, 54: 3374-3380
[6] Rui X H, Li C, Liu J, Cheng T, Chen C H. Electrochim. Acta, 2010, 55: 6761-6767
[7] Wang L J, Zhou X C, Guo Y L. J. Power Sources, 2010, 195(9): 2844-2850.
[8] Wang L, Zhang L C, Lieberwirth I, Xu H W, Chen C H. Electrochem. Commun., 2010, 12: 52-55
[9] Chen C H, Schoonman J. Nato. Adv. Sci. I E-App., 2000, 368: 295-321
[10] Amine K, Tukamoto H, Yasuda H, Fujita Y. J. Electrochem. Soc., 1996: 143: 1607-1613
[11] Zhong Q M, Bonakdarpour A, Zhang M J, Gao Y, Dahn J R. J. Electrochem. Soc., 1997, 144: 205-213
[12] Fang X, Ding N, Feng X Y, Lu Y, Chen C H. Electrochim. Acta, 2009, 54: 7471-7475
[13] 代克化(Dai K H), 毛景(Mao J), 翟玉春(Zhai Y C). 物理化学学报(Acta Phys. Chim. Sin.), 2010, 26(8): 2130-2134
[14] Ding N, Ge X W, Chen C H. Mater. Res. Bull., 2005, 40: 1451-1459
[15] Ding N, Zhu J, Yao Y X, Chen C H. Electrochim. Acta, 2006, 51: 6320-6324
[16] Ding N, Zhu J, Yao Y X, Chen C H. Chem. Phys. Lett., 2006, 426: 324-328
[17] Wen J W, Liu H J, Wu H, Chen C H. J. Mater. Sci., 2007, 42: 7696-7701
[18] Xu H Y, Xie S, Ding N, Liu B L, Shang Y, Chen C H. Electrochim. Acta, 2006, 51: 4352-4357
[19] Wang D, Ding N, Song X, Chen C H. J. Mater. Sci., 2009, 44: 198-203
[20] Wang P C, Ding H P, Bark T, Chen C H. Electrochim. Acta, 2007, 52: 6650-6655
[21] Liu Z L, Yu A S, Lee J Y. J. Power Sources, 1999, 82: 416-419
[22] Ding C X, Bai Y C, Feng X Y, Chen C H. Proceeding of the 12th Asian Conference on Solid State Ionics. 2010
[23] Ding N, Feng X Y, Liu S H, Xu J, Fang X, Lieberwirth I, Chen C H. Electrochem. Commun., 2009, 11: 538-541
[24] Deschanvers A, Raveau B, Sekkal Z. Mater. Res. Bull., 1971, 6: 699
[25] Wang D, Xu H Y, Gu M, Chen C H. Electrochem. Commun., 2009, 11: 50-53
[26] Cheng L, Yan J, Zhu G N, Luo J Y, Wang C X, Xia Y Y. J. Mater. Chem., 2010, 20(3): 595-602.
[27] Wang L, Ding C X, Zhang L C, Xu H W, Zhang D W, Cheng T, Chen C H. J. Power Sources, 2010, 195: 5052-5056
[28] Wang L, Xu H W, Chen P C, Zhang D W, Ding C X, Chen C H. J. Power Sources, 2009, 193: 846-850
[29] Wang S Q, Zhang J Y, Chen C H. J. Power Sources, 2010, 195: 5379-5381
[30] He Y, Huang L, Cai J S, Zheng X M, Sun S G. Electrochim. Acta, 2010, 55(3): 1140-1144
[31] Rui X H, Yesibolati N, Chen C H. J. Power Sources, 2011, 196: 2279-2282
[32] Xiang H F, Zhang X, Jin Q Y, Zhang C P, Chen C H, Ge X W. J. Power Sources, 2008, 183: 355-360

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
阅读次数
全文


摘要

锂离子电池电极材料选择