English
新闻公告
More
化学进展 2011, Vol. 23 Issue (0203): 264-274 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池硅复合负极材料研究进展

高鹏飞, 杨军*   

  1. 上海交通大学化学化工学院 上海 200240
  • 收稿日期:2010-09-01 修回日期:2010-10-01 出版日期:2011-03-24 发布日期:2011-01-26
  • 通讯作者: e-mail:yangj723@sjtu.edu.cn E-mail:yangj723@sjtu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20873085)、国家高技术发展计划(863)项目(No.2006AA03Z232)和国家重点基础研究发展计划(973)项目(No.2007CB209700)资助

Si-Based Composite Anode Materials for Li-Ion Batteries

Gao Pengfei, Yang Jun*   

  1. School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2010-09-01 Revised:2010-10-01 Online:2011-03-24 Published:2011-01-26

硅基负极材料具有最高的储锂容量和较低的电压平台,是最具潜力的下一代锂离子电池负极材料之一。然而,硅负极巨大的体积效应、较低的电导率以及与常规电解液的不相容性限制了其商业化应用。目前,提高硅负极性能的措施主要包括:通过设计硅基负极材料的组成和微观结构来抑制其体积变化并改善导电性,研发适于硅负极的粘结剂和电解液添加剂,探索新型集流体及电极结构等。其中改进活性硅基材料的主要措施有纳米化、复合化等。本文论述了近年来硅基复合材料研究领域的一些最新进展和研究热点,阐述了本课题组在此领域的一些工作;讨论了硅-非金属复合材料、硅-金属复合材料各自存在的技术瓶颈并展望其未来发展方向。

Silicon is one of the most attractive anode materials for lithium ion batteries on account of its low discharge potential and the highest theoretical capacity for lithium storage. However, the large volume effect, poor electronic conductivity and incompatibility with the conventional electrolyte hinder its commercial applications. So far, strategies to overcome these hinders include designing the composition and microstructure of silicon active materials to suppress the volume change and improve the conductivity, developing new binders and electrolyte additives and exploring new current collectors and suitable electrode structures. There are mainly two methods to improve the silicon active materials. One is to decrease the scale of active Si domain to nanoscale, the other is to fabricate the composite structures. This paper summarizes the recent progress in silicon based composite materials, including Si-nonmetal composites and Si-metal composites, as well as some researches of our group, and discusses the technological bottlenecks and development trends.

中图分类号: 

()

[1] Armand M, Tarascon J. Nature, 2008, 451 (7179): 652-657
[2] Boukamp B A, Lesh G C, Huggins R A. J. Electrochem. Soc., 1981, 128 (4): 725-729
[3] Megahed S, Scrosati B. J. Power Sources, 1994, 51 (1/2): 79-104
[4] Huggins R A. J. Power Sources, 1999, 81: 13-19
[5] Ryu J H, Kim J W, Sung Y E, Oh S M. Electrochem. Solid State Lett., 2004, 7 (10): A306-A309
[6] Choi N, Yew K, Kim H, Kim S, Choi W. J. Power Sources, 2007, 172 (1): 404-409
[7] Li H, Huang X, Chen L, Wu Z, Liang Y. Electrochem. Solid State Lett., 1999, 2: 547-549
[8] Ma H, Cheng F, Chen J, Zhao J, Li C, Tao Z, Liang J. Adv. Mater., 2007, 19 (22): 4067-4070
[9] Li H, Huang X J, Chen L Q, Zhou G W, Zhang Z, Yu D P, Mo Y J, Pei N. Solid State Ionics, 2000, 135 (1/4): 181-191
[10] Cui L F, Ruffo R, Chan C K, Peng H, Cui Y. Nano Lett., 2008, 9 (1): 491-495
[11] Chan C K, Patel R N, O’Connell M J, Korgel B A, Cui Y. ACS Nano, 2010, 4 (3): 1443-1450
[12] Song T, Xia J, Lee J H, Lee J H, Kwon M S, Choi J M, Wu J, Doo S K, Chang H, Park W I, Zang D S, Kim H, Huang Y, Hwang K C, Rogers J A, Paik U. Nano Lett., 2010, 10(5): 1710-1716
[13] Fll H, Hartz H, Ossei-Wusu E, Carstensen J, Riemenschneider O. Phys. Status Solidi-R., 2010, 4 (1/2): 4-6
[14] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nano, 2008, 3 (1): 31-35
[15] Uehara M, Suzuki J, Tamura K, Sekine K, Takamura J. J. Power Sources, 2005, 146(1/2): 441-444
[16] Buqa H, Holzapfel M, Krumeich F, Veit C, Novák P. J. Power Sources, 2006, 161: 617-622
[17] Li J, Christensen L, Obrovac M N, Hewitt K C, Dahn J R. J. Electrochem. Soc., 2008, 155 (3): A234-A238
[18] Xu Y, Yin G, Ma Y, Zuo P, Cheng X. J. Power Sources, 2010, 195 (7): 2069-2073
[19] 高鹏飞(Gao P F), 陈益中(Chen Y Z), 杨军(Yang J). 化学与物理电源系统(Chemical and Physical Power Sources), 2010, (16): 4-9
[20] Kim Y L, Sun Y K, Lee S M. Electrochim. Acta, 2008, 53 (13): 4500-4504
[21] 杨军(Yang J), 高鹏飞(Gao P F), 王久林(Wang J L), 努丽燕娜(Nuli Y N). CN101453007, 2008
[22] Zhang T, Fu L, Gao J, Yang L, Wu Y, Wu H. Pure Appl. Chem., 2006, 78 (10): 1889-1896
[23] Kasavajjula U, Wang C S, Appleby A J. J. Power Sources, 2007, 163 (2): 1003-1039
[24] Yoshio M, Wang H, Fukuda K, Umeno T, Dimov N, Ogumi Z. J. Electrochem. Soc., 2002, 149: A1598-A1603
[25] Ng S H, Wang J, Wexler D, Konstantinov K, Guo Z P, Liu H K. Angew. Chem. Int. Ed., 2006, 45 (41): 6896-6899
[26] Ng S H, Wang J, Wexler D, Chew S Y, Liu H K. J. Phys. Chem. C, 2007, 111 (29): 11131-11138
[27] Ng S H, Wang J, Konstantinov K, Wexler D, Chew S Y, Guo Z P, Liu H K. J. Power Sources, 2007, 174 (2): 823-827
[28] Kwon Y, Park G, Cho J. Electrochim. Acta, 2007, 52 (14): 4663-4668
[29] Kim H, Seo M, Park M H, Cho J. Angew. Chem. Int. Ed., 2010, 49 (12): 2146-2149
[30] Hu Y S, Demir-Cakan R, Titirici M M, Müller J O, Schlgl R, Antonietti M, Maier J. Angew. Chem. Int. Ed., 2008, 47 (9): 1645-1649
[31] Demir-Cakan R, Titirici M M, Antonietti M, Cui G, Maier J, Hu Y S. Chem. Commun., 2008, 3759-3761
[32] Su L W, Zhou Z, Ren M M. Chem. Commun., 2010, 46 (15): 2590-2592
[33] Xu Y, Yin Y, Ma Y, Zuo P, Cheng X. J. Mater. Chem., 2010, 20 (16): 3216-3220
[34] Lee J K, Kung M C, Trahey L, Missaghi M N, Kung H H. Chem. Mater., 2008, 21 (1): 6-8
[35] Gao P F, Fu J W, Yang J, Lü R G, Wang J L, Nuli Y N, Tang X Z. Phys. Chem. Chem. Phys., 2009, 11 (47): 11101-11105
[36] Huang R, Fan X, Shen W, Zhu J. Appl. Phys. Lett., 2009, 95 (13): 133119-133113
[37] Kim H, Cho J. Nano Lett., 2008, 8 (11): 3688-3691
[38] Park M H, Kim M G, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J. Nano Lett., 2009, 9 (11): 3844-3847
[39] Lü R G, Yang J, Gao P F, NuLi Y N, Wang Y N. J. Alloy. Compd., 2010, 490 (1/2): 84-87
[40] Ji L, Zhang X. Mater. Lett., 2008, 62 (14): 2161-2164
[41] Ji L, Jung K, Medford A, Zhang X. J. Mater. Chem., 2009, 19 (28): 4992-4997
[42] Ji L, Zhang X. Carbon, 2009, 47 (14): 3219-3226
[43] Ji L, Zhang X. Energy Environ. Sci., 2010, 3 (1): 124-129
[44] Schulz D L, Hoey J, Smith J, Elangovan A, Wu X, Akhatov I, Payne S, Moore J, Boudjouk P, Pederson L, Xiao J, Zhang J G. Electrochem. Solid-State Lett., 2010, 13 (10): A143-A145
[45] Wang L, Ding C, Zhang L, Xu H, Zhang D, Cheng T, Chen C. J. Power Sources, 2010, 195 (15): 5052-5056
[46] Ji J, Zhang X. Electrochem. Commun., 2009, 11 (6): 1146-1149
[47] Shu J, Li H, Yang R Z, Shi Y, Huang X J. Electrochem. Commun., 2006, 8 (1): 51-54
[48] Kim T, Mo Y H, Nahm K S, Oh S M. J. Power Sources, 2006, 162 (2): 1275-1281
[49] Liu H P, Qiao W M, Zhan L, Ling L C. New Carbon Mater., 2009, 24 (2): 124-130
[50] Jang S M, Miyawaki J, Tsuji M, Mochida I, Yoon S H. Carbon, 2009, 47 (15): 3383-3391
[51] Cui L F, Yang Y, Hsu C M, Cui Y. Nano Lett., 2009, 9 (9): 3370-3374
[52] Wang W, Kumta P N. ACS Nano, 2010, 4 (4): 2233-2241
[53] Hertzberg B, Alexeev A, Yushin G. J. Am. Chem. Soc., 2010, 132 (25): 8548-8549
[54] Bao Z, Weatherspoon M, Shian S, Cai Y, Graham P, Allan S, Ahmad G, Dickerson M, Church B, Kang Z. Nature, 2007, 446 (7132): 172-175
[55] Han W K, Ko Y N, Yoon C S, Choa Y H, Oh S T, Kang S G. Korean J. Mater. Res., 2009, 19 (10): 517-521
[56] Kim H, Han B, Choo J, Cho J. Angew. Chem. Int. Ed., 2008, 47 (52): 10151-10154
[57] Liu W R, Wang J H, Wu H C, Shieh D T, Yang M H, Wu N L. J. Electrochem. Soc., 2005, 152 (9): A1719-A1725
[58] Dimov N, Kugino S, Yoshio M. Electrochim. Acta, 2003, 48 (11): 1579-1587
[59] Saint J, Morcrette M, Larcher D, Laffont L, Beattie S, Peres J, Talaga D, Couzi M, Tarascon J. Adv. Funct. Mater., 2007, 17 (11): 1765-1774
[60] Liu Y, Wen Z Y, Wang X Y, Hirano A, Imanishi N, Takeda Y. J. Power Sources, 2009, 189 (1): 733-737
[61] Wen Z S, Yang J, Wang B F, Wang K, Liu Y. Electrochem. Commun., 2003, 5 (2): 165-168
[62] Yang J, Wang B F, Wang K, Liu Y, Xie J Y, Wen Z S. Electrochem. Solid-State Lett., 2003, 6 (8):A154-A156
[63] Zheng Y, Yang J, Wang J, NuLi Y. Electrochim. Acta, 2007, 52 (19): 5863-5867
[64] Magasinski A, Dixon P, Hertzberg B, Kvit A, Ayala J, Yushin G. Nat. Mater., 2010, 9 (4): 353-358
[65] Cahen S, Janot R, Laffont-Dantras L, Tarascon J M. J. Electrochem. Soc., 2008, 155 (7): A512-A519
[66] Chou S L, Wang K B, Choucair M, Liu H K, Stride J A, Dou S X. Electrochem. Commun., 2010, 12 (2): 303-306
[67] Wang J, Zhong C, Chou S, Liu H. Electrochem. Commun., 2010, 12(11): 1467-1470
[68] Lee J K, Smith K B, Hayner C M, Kung H H. Chem. Commun., 2010, 46 (12): 2025-2027
[69] Wilson A, Xing W, Zank G, Yates B, Dahn J. Solid State Ionics, 1997, 100 (3/4): 259-266
[70] Wilson A M, Dahn J R. J. Electrochem. Soc., 1995, 142 (2): 326-332
[71] Wang X, Wen Z, Liu Y, Huang L, Wu M. J. Alloy Compd., 2010, 506(1): 317-322
[72] Wang X, Wen Z, Liu Y, Huang Y, Wen T. Solid State Ionics, 2010, doi: 10. 1016/j. ssi. 2010. 03. 008
[73] 王秀艳(Wang X Y). 中国科学院上海硅酸盐研究所博士论文(Doctoral Dissertation of Shanghai Institute of Ceramics, Chinese Academy of Sciences), 2010
[74] Liu Y, Matsumura T, Imanishi N, Hirano A, Ichikawa T, Takeda Y. Electrochem. Solid-State Lett., 2005, 8 (11): A599-A602
[75] Hanai K, Liu Y, Imanishi N, Hirano A, Matsumura M, Ichikawa T, Takeda Y. J. Power Sources, 2005, 146 (1/2): 156-160
[76] Wu Y S, Lee Y H, Tsai Y L. J. Mater. Process. Tech., 2008, 208 (1/3): 35-41
[77] Veluchamy A, Doh C H, Kim D H, Lee J H, Lee D J, Ha K H, Shin H M, Jin B S, Kim H S, Moon S I, Park C W. J. Power Sources, 2009, 188 (2): 574-577
[78] Lu Z, Zhang L, Liu X. J. Power Sources, 2010, 195 (13): 4304-4307
[79] Park C M, Choi W, Hwa Y, Kim J H, Jeong G, Sohn H J. J. Mater. Chem., 2010, 20 (23): 4854-4860
[80] Guo Z P, Wang J Z, Liu H K, Dou S X. J. Power Sources, 2005, 146 (1/2): 448-451
[81] Dong H, Feng R X, Ai X P, Cao Y L, Yang H X. Electrochim. Acta, 2004, 49 (28): 5217-5222
[82] Netz A, Huggins R A, Weppner W. J. Power Sources, 2003, 119/121: 95-100
[83] Liu W R, Wu N L, Shieh D T, Wu H C, Yang M H, Korepp C, Besenhard J O, Winter M. J. Electrochem. Soc., 2007, 154 (2): A97-A102
[84] Yoon S, Lee S I, Kim H, Sohn H J. J. Power Sources, 2006, 161 (2): 1319-1323
[85] Sano Y T, Hasegawa M, Bito Y. in Extended Abstract in the 46th Battery Symposium, Nagoya, Japan, 2005. 480-481
[86] Zhou S, Liu X H, Wang D W. Nano Lett., 2010, 10 (3): 860-863
[87] Nuli Y, Wang B, Yang J, Yuan X, Ma Z. J. Power Sources, 2006, 153 (2): 371-374
[88] Kim H, Choi J, Sohn H J, Kang T. J. Electrochem. Soc., 1999, 146 (12): 4401-4405
[89] Yang X L, Wen Z Y, Zhang L L, You M, Lin Z X. Chinese J. Inorg. Chem., 2007, 23 (12): 2054-2058
[90] Chen Z, Christensen L, Dahn J R. Electrochem. Commun., 2003, 5 (11): 919-923
[91] Wang X, Wen Z, Liu Y, Wu X. Electrochim. Acta, 2009, 54 (20): 4662-4667
[92] Yu Y, Gu L, Zhu C, Tsukimoto S, Aken P A V, Maier J. Adv. Mater., 2010, 22 (20): 2247-2250
[93] Guo J, Sun A, Wang C. Electrochem. Commun., 2010, 12 (7): 981-984
[94] Xu W, Canfield N L, Wang D, Xiao J, Nie Z, Li X S, Bennett W D, Bonham C C, Zhang J G. J. Electrochem. Soc., 2010, 157 (7): A765-A769
[95] Yang J, Takeda Y, Imanishi N, Yamamoto O. Electrochim. Acta, 2001, 46 (17): 2659-2664
[96] Liu Y, Hanai K, Horikawa K, Imanishi N, Hirano A, Takeda Y. Mater. Chem. Phys., 2005, 89 (1): 80-84
[97] Seong I W, Kim K T, Yoon W Y. J. Power Sources, 2009, 189 (1): 511-514

[1] 于小燕, 李萌, 魏磊, 邱景义, 曹高萍, 文越华. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[4] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[5] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[6] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[7] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[8] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[9] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[10] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[11] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[12] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[13] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[14] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[15] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.