English
新闻公告
More
化学进展 2011, Vol. 23 Issue (01): 221-230 前一篇   后一篇

• 综述与评论 •

基于微流控芯片的微阵列分析

瞿祥猛1,2, 林荣生3, 陈宏1,2   

  1. 1. 厦门大学萨本栋微纳米技术研究中心 厦门 361005;
    2. 厦门大学机电工程系 厦门 361005;
    3. 厦门华厦职业学院食品药品课程教学部 厦门 361024
  • 收稿日期:2010-06-01 修回日期:2010-10-01 出版日期:2011-01-20 发布日期:2011-09-02
  • 作者简介:e-mail: hongc@xmu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21005066)、中央高校基本科研业务费专项资金(No.2010121044)和高等学校博士学科点专项科研基金(No.20100121120025)资助

Microfluidic Chip Based Microarray Analysis

Qu Xiangmeng1,2, Lin Rongsheng3, Chen Hong1,2   

  1. 1. Pen-Tung Sah Micro-Nano Technology Research Center, Xiamen University, Xiamen 361005, China;
    2. Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005, China;
    3. Food and Drug Course Teaching Department, Xiamen Huaxia Vocational College, Xiamen 361024, China
  • Received:2010-06-01 Revised:2010-10-01 Online:2011-01-20 Published:2011-09-02

微阵列芯片具有高通量、微量化和自动化等特点,已经在很多领域得到广泛应用。但是微阵列芯片仍然具有不足之处,如所需设备昂贵、分析时间较长、灵敏度不高、多样品平行分析能力不足等。微流控芯片微米级的通道具有相对较大的比表面积和较短的扩散距离,能够显著加快分析速度、提高检测效率、增强分析性能,并且能够加工大量的平行通道用于多样品分析。目前已经有大量文献报道将微流控芯片和微阵列芯片相结合,发展了独特的杂交方式并在实验和理论上分别证明了两者相结合的优势,本文综述了将微流控芯片技术应用于微阵列分析的研究进展,着重介绍了在微流控芯片上进行微阵列分析时的杂交方式、促进杂交的措施以及杂交过程的数学建模,同时也介绍了其他分析步骤方面的进展。最后分析了目前微流控芯片技术在进行微阵列杂交应用方面的不足及其原因,并指出这两项技术相结合的优势和未来。

Microarray chip has been widely used in many fields because of its high throughput,miniaturization and automation.But there are still some disadvantages,such as highly priced instruments,long analysis time,low sensitivity and lacking of parallel analysis ability.Microfluidic device has large specific surface area and short diffusion distance because of its micrometer scale size,which can provide faster hybridization,higher detection efficiency,better analysis performance,and lots of parallel channels can be fabricated for multiple sample analysis.In present,the combination of microfluidic chip and microarray chip has been widely reported,specific hybridization method has been developed and the advantages have been demonstrated experimentally and theoretically.This review presents the research advances of microfluidic chip based microarray analysis,mainly including the specific hybridization procedures,improvement measures and mathematical modeling of hybridization.The progress in other steps has also been introduced.In addition,the disadvantages and advantages by combining microfluidic and microarray technologies are discussed.

中图分类号: 

()

[1] Manz A, Graber N, Widemer H M. Sens. Acturators B, 1990, 1: 244—288
[2] 肖守军(Xiao S H), 陈凌(Chen L), 许宁(Xu L). 化学进展(Progress in Chemistry), 2009, 21(11): 2397—2410
[3] Noerholm M, Bruus H, Jakobsen M H, Telleman P, Ramsing N B. Lab Chip, 2004, 4: 28—37
[4] Keramas G, Perozziello G, Geschke O, Christensen C B V. Lab Chip, 2004, 4: 152—158
[5] Peytavi R, Raymond F R, Gagne D, Picard F J, Jia G Y, Zoval J, Madou M, Boissinot K, Boissinot M, Bissonnette L, Ouellette M, Bergeron M G. Clin. Chem., 2005, 51: 1836—1844
[6] Lee H H, Smoot J, Murray Z M, Stahl D A, Yager P. Lab Chip, 2006, 6: 1163—1170
[7] Liu J, Williams B A, Gwirtz R M, Wold B J, Quake S. Angew. Chem. Int. Ed., 2006, 45: 3618—3623
[8] Wei C W, Cheng J Y, Huang C T, Yen M H, Young T H. Nucleic Acids Res., 2005, 33: art. no. e78
[9] Erickson D, Liu X Z, Krull U, Li D Q. Anal. Chem., 2004, 76: 7269—7277
[10] Erickson D, Liu X Z, Venditti R, Li D Q, Krull U J. Anal. Chem., 2005, 77: 4000—4007
[11] Jia G Y, Ma K S, Kim J, Zoval J V, Peytavi R, Bergeron M G, Madou M J. Sens. Actuators B, 2006, 114: 173—181
[12] Wang L, Li P C H. J. Agric. Food Chem., 2007, 55: 10509—10516
[13] Peng X Y, Li P C H, Yu H Z, Parameswaran M, Chou W L. Sens. Actuators B, 2007, 128: 64—69
[14] Wang L, Li P C H. Anal. Biochem., 2010, 400: 282—288
[15] Chen H, Wang L, Li P C H. Lab Chip, 2008, 8: 826—829
[16] Pregibon D C, Toner M, Doyle P S. Science, 2007, 315: 1393—1396
[17] Tan W S, Lewis C L, Horelik N E, Pregibon D C, Doyle P S, Yi H. Langmuir, 2008, 24: 12483—12488
[18] Pregibon D C, Doyle P S. Anal. Chem., 2009, 81: 4873—4881
[19] Yuen P K, Li G S, Bao Y J, Muller U R. Lab Chip, 2003, 3: 46—50
[20] Bynum M A, Gordon G B. Anal. Chem., 2004, 76: 7039—7044
[21] Lenigk R, Liu R H, Athavale M, Chen Z J, Ganser D, Yang J N, Rauch C, Liu Y J, Chan B, Yu H N, Ray M, Marrero R, Grodzinski P. Anal. Biochem., 2002, 311: 40—49
[22] Chung Y C, Lin Y C, Shiu M Z, Chang W N T. Lab Chip, 2003, 3: 228—233
[23] Chung Y C, Lin Y C, Hsu Y L, Chang W N T, Shiu M Z. J. Micromech. Microeng., 2004, 14: 1376—1383
[24] Chung Y C, Lin Y C, Chueh C D, Ye C Y, Lai L W, Zhao Q L. Electrophoresis, 2008, 29: 1859—1865
[25] Petersen J, Poulsen L, Petronis S, Birgens H, Dufva M. Nucleic Acids Res., 2008, 36: art. no. e10
[26] Benn J A, Hu J, Hogan B J, Fry R C, Samson L D, Thorsen T. Anal. Biochem., 2006, 348: 284—293
[27] Kim J H S, Marafie A, Jia X Y, Zoval J V, Madou M J. Sens. Actuators B, 2006, 113: 281—289
[28] Das S, Subramanian K, Chakraborty S. Colloids Surf. B, 2007, 58: 203—217
[29] Bishop J, Blair S, Chagovetz A. Biosens. Bioelectron., 2007, 22: 2192—2198
[30] Lambert R A, Das S, Madou M J, Chakraborty S, Rangel R H. Int. J. Heat Mass Transfer, 2008, 51: 4367—4378
[31] Das S, Chakraborty S. AlChE J., 2007, 53: 1086—1099
[32] Erickson D, Li D Q, Krull U J. Anal. Biochem., 2003, 317: 186—200
[33] Bishop J, Blair S, Chagovetz A M. Biophys. J., 2006, 90: 831—840
[34] Fodor S P A, Read J L, Pirrung M C. Science, 1991, 251: 767—773
[35] Schena M, Shalon D, Davis R W, Brown P O. Science, 1995, 20: 467—470
[36] Frank R. Tetrahedron, 1992, 48: 9217—9232
[37] 余志文(Yu Z W), 于军(Yu J), 徐静平(Xu J P), 周文利(Zhou W L). 微电子学(Microelectronics), 2001, 31(2): 100—102
[38] Zhang L G, Liu J F, Lu Z H. Science, 1998, 5: 713—715
[39] Moorcroft M J, Meuleman W R A, Latham S G, Nicholls T J, Egeland R D, Southern E M. Nucleic Acids Res., 2005, 33: e75
[40] Cheng J Y, Chen H Y. Biotechnol. Bioeng., 2009, 104: 400—407
[41] Zhou X C, Cai S Y, Hong A L, You Q M, Yu P L, Sheng N J, Srivannavit O, Muranjan S, Rouillard J M, Xia Y M, Zhang X L, Xiang Q, Ganesh R, Zhu Q, Matejko A, Gulari E, Gao X L. Nucleic Acids Res., 2004, 32: 5409—5417
[42] Srivannavit O, Gulari M, Hua Z S, Gao X L, Zhou X C, Hong A L, Zhou T C, Gulari E. Sens. Actuators B, 2009, 140: 473—481
[43] Tian J D, Gong H, Sheng N J, Zhou X C, Gulari E, Gao X L, Church G. Nature, 2004, 432: 1050—1054
[44] 方肇伦(Fang Z L). 微流控分析芯片(Microfluidic Analytical Chips). 北京:科学出版社(Beijing:Science Press), 2003
[45] Belosludtsev Y, Iverson B, Lemeshko S, Eggers R, Wiese R, Lee S, Powdrill T, Hogan M. Anal. Biochem., 2001, 292: 250—256
[46] Schlapak R, Pammer P, Armitage D, Zhu R, Hinterdorfer P, Vaupel M, Fruhwirth T, Howorka S. Langmuir, 2006, 22: 277—285
[47] Regenberg B, Kruhne U, Beyer M, Pedersen L H, Simon M, Thomas O R T, Nielsen J, Ahl T. Lab Chip, 2004, 4: 654—657
[48] Goddard J M, Erickson D. Anal. Bioanal. Chem., 2009, 394: 469—479
[49] Liu D J, Perdue R K, Sun L, Crooks R M. Langmuir, 2004, 20: 5905—5910
[50] Sui G D, Wang J Y, Lee C C, Lu W X, Lee S P, Leyton J V, Wu A M, Tseng H R. Anal. Chem., 2006, 78: 5543—5551
[51] Cretich M, Sedini V, Damin F, Carlo G D, Oldani C, Chiari M. Sens. Actuators B, 2008, 132: 258—264
[52] Situma C, Wang Y, Hupert M, Barany F, McCarley R L, Soper S A. Anal. Biochem., 2005, 340: 123—135
[53] Zhao Z S, Peytavi R, Diaz-Quijada G A, Picard F J, Huletsky A, Leblanc E, Frenette J, Boivin G, Veres T, Dumoulin M M, Bergeron M G. J. Clin. Microbiol., 2008, 46: 3752—3758
[54] Li Y C, Wang Z, Ou L M L, Yu H Z. Anal. Chem., 2007, 79: 426—433
[55] Pu Q S, Oyesanya O, Thompson B, Liu S T, Alvarez J C. Langmuir, 2007, 23: 1577—1583
[56] Geissler M, Roy E, Diaz-Quijada G A, Galas J C, Veres T. ACS Appl. Mater. Interfaces, 2009, 1: 1387—1395
[57] Sabourin D, Petersen J, Snakenborg D, Brivio M, Gudnadson H, Wolff A, Dufva M. Biomed. Microdevices, 2010, 12: 673—681
[58] Saaem I, Ma K S, Marchi A N, LaBean T H, Tian J D. ACS Appl. Mater. Interfaces, 2010, 2: 491—497
[59] Marie R, Schmid S, Johansson A, Ejsing L, Nordstrom M, Hafliger D, Christensen C B V, Boisen A, Dufva M. Biosens. Bioelectron., 2006, 21: 1327—1332
[60] Wang L, Li P C H, Yu H Z, Parameswaran A M. Anal. Chim. Acta, 2008, 610: 97—104
[61] Li C Y, Dong X L, Qin J H, Lin B C. Anal. Chim. Acta, 2009, 640: 93—99
[62] Li C Y, Li H J, Qin J H, Lin B C. Electrophoresis, 2009, 30: 4270—4276
[63] Berdat D, Rodríguez A C M, Herrera F, Gijs M A M. Lab Chip, 2008, 8: 302—308
[64] Schuler T, Kretschmer R, Jessing S, Urban M, Fritzsche W, Moller R, Popp J. Biosens. Bioelectron., 2009, 25: 15—21
[65] Malic L, Veres T, Tabrizian M. Biosens. Bioelectron., 2009, 24: 2218—2224
[66] Lee H J, Goodrich T T, Corn R M. Anal. Chem., 2001, 73: 5525—5531
[67] Im H, Lesuffleur A, Lindquist N C, Oh S H. Anal. Chem., 2009, 81: 2854—2859
[68] Xu F, Datta P, Wang H, Gurung S, Hashimoto M, Wei S Y, Goettert J, McCarley R L, Soper S A. Anal. Chem., 2007, 79: 9007—9013
[69] Suter J D, White I M, Zhu H Y, Shi H D, Caldwell C W, Fan X D. Biosens. Bioelectron., 2008, 23: 1003—1009
[70] 马立人(Ma L R), 蒋中华(Jiang Z H). 生物芯片(Biochip). 北京:化学工业出版社(Beijing:Chemical Industry Press), 2002
[71] Soper S A, Hashimoto M, Situma C, Murphy M C, McCarley R L, Cheng Y W, Barany F. Methods, 2005, 37: 103—113
[72] Hashimoto M, Hupert M L, Murphy M C, Soper S A. Anal. Chem., 2005, 77: 3243—3255
[73] Wang Y, Vaidya B, Farquar H D, Stryjewski W, Hammer R P, McCarley R L, Soper S A. Anal. Chem., 2003, 75: 1130—1140
[74] Hashimoto M, Barany F, Soper S A. Biosens. Bioelectron., 2006, 21: 1915—1923
[75] Wick L M, Rouillard J M, Whittam T S, Gulari E, Tiedje J M, Hashsham S A. Nucleic Acids Res., 2006, 34: art. no. e26
[76] Dodge A, Turcatti G, Lawrence I, de Rooij N F, Verpoorte E. Anal. Chem., 2004, 76: 1778—1787
[77] Bau S, Schracke N, Kranzle M, Wu H G, Stahler P F, Hoheisel J D, Beier M, Summerer D. Anal. Bioanal. Chem., 2009, 393: 171—175
[78] Summerer D, Wu H G, Haase B, Cheng Y, Schracke N, Stahler C F, Chee M S, Stahler P F, Beier M. Genome Res., 2009, 19: 1616—1621
[79] Summerer D, Schracke N, Wu H G, Cheng Y, Bau S, Stahler C F, Stahler P F, Beier M. Genomics, 2010, 95: 241—246
[80] Summerer D, Hevroni D, Jain A, Oldenburger O, Parker J, Caruso A, Stahler C F, Stahler P F, Beier M. New Biotechnology, 2010, 27: 149—155
[81] Petersen J, Poulsen L, Birgens H, Dufva M. PLoS ONE, 2009, 4: art. no. e4808S
[82] Liu Y J, Rauch C B, Stevens R L, Lenigk R, Yang J N, Rhine D B, Grodzinski P. Anal. Chem., 2002, 74: 3063—3070
[83] Liu R H, Yang J N, Lenigk R, Bonanno J, Grodzinski P. Anal. Chem., 2004, 76: 1824—1831
[84] Liu R H, Nguyen T, Schwarzkopf K, Fuji H S, Petrova A, Siuda T, Peyvan K, Bizak M, Danley D, McShea A. Anal. Chem., 2006, 78: 1980—1986
[85] Liu R H, Lodes M J, Nguyen T, Siuda T, Slota M, Fuji H S, McShea A. Anal. Chem., 2006, 78: 4184—4193
[86] Anderson R C, Su X, Bogdan G J, Fenton J. Nucleic Acids Res., 2000, 28: art. no. e60

[1] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[2] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[3] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[4] 黄炎, 刘国东, 张学记. 新型冠状病毒(COVID-19)的检测和诊断[J]. 化学进展, 2020, 32(9): 1241-1251.
[5] 赖欣宜, 王志勇, 郑永太, 陈永明. 纳米金属有机框架材料在药物递送领域的应用[J]. 化学进展, 2019, 31(6): 783-790.
[6] 张聪, 岳巧丽, 陶丽霞, 胡莹莹, 李晨钟, 唐波. 基于核酸探针的光学传感方法和细胞成像研究[J]. 化学进展, 2019, 31(6): 858-871.
[7] 单艳群, 王晓英*. 赭曲霉毒素A的电化学适体传感检测[J]. 化学进展, 2018, 30(6): 797-808.
[8] 周洋洋, 钟建, 卞晓军, 刘刚, 李亮, 颜娟. 信号放大技术在食品安全检测领域的应用[J]. 化学进展, 2018, 30(2/3): 206-224.
[9] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[10] 郑小辉, 夏立新, 毛宗万. 基于核酸修饰新策略的抗肿瘤铂配合物设计[J]. 化学进展, 2016, 28(7): 1029-1038.
[11] 蒋艳, 徐溢, 王人杰, 苏喜, 董春燕. 新型纳米荧光探针在微流控细菌芯片检测中的应用[J]. 化学进展, 2015, 27(9): 1240-1250.
[12] 雷相阳, 邱宪波, 葛胜祥, 夏宁邵, 陈兴, 崔大付. 基于微流控芯片的CD4+T淋巴细胞计数检测[J]. 化学进展, 2015, 27(7): 870-881.
[13] 马昀, 周妍, 杜文琦, 缪智辉, 祁争健. 基于共轭聚合物的核酸生物传感器的应用[J]. 化学进展, 2015, 27(12): 1799-1807.
[14] 桂珍, 严枫, 李金昌, 葛梦圆, 鞠熀先. 锁核酸分子信标在分子识别与生物分析中的应用[J]. 化学进展, 2015, 27(10): 1448-1458.
[15] 邱晓沛, 张洪, 蒋天伦, 罗阳. 双链特异性核酸酶的生物学和医学应用[J]. 化学进展, 2014, 26(11): 1840-1848.
阅读次数
全文


摘要

基于微流控芯片的微阵列分析