English
新闻公告
More
化学进展 2011, Vol. 23 Issue (01): 202-212 前一篇   后一篇

• 综述与评论 •

基于生物大分子的纳米药物载体

陈孟婕, 姚晋荣, 邵正中, 陈新   

  1. 聚合物分子工程教育部重点实验室 复旦大学高分子科学系 先进材料实验室 上海 200433
  • 收稿日期:2010-06-01 修回日期:2010-09-01 出版日期:2011-01-20 发布日期:2011-09-02
  • 作者简介:e-mail: chenx@fudan.edu.cn; yaoyaojr@fudan.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20974025,10979022,20974024)资助

Biomacromolecule-based Nanoparticle Drug Carriers

Chen Mengjie, Yao Jinrong, Shao Zhengzhong, Chen Xin   

  1. The Key Laboratory of Molecular Engineering of Polymers of MOE, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
  • Received:2010-06-01 Revised:2010-09-01 Online:2011-01-20 Published:2011-09-02

生物大分子材料由于其可再生性、无毒性以及良好的生物相容性、生物可降解性和黏膜粘附性等特点成为药物载体研究的热点,尤其是将其作为纳米药物载体材料更加受人关注。本文首先对生物大分子纳米颗粒常用的制备方法——乳化法、自组装法和离子凝聚法进行了详细的介绍。由于乳化法在一定程度上破坏了生物大分子的生物相容性,因此自组装法和离子凝聚法是比较理想的制备方法。其中自组装法是利用两亲性的生物大分子,如蛋白质、多糖衍生物等在静电作用、疏水作用、范德华力等非键合作用力下组装成纳米结构;而离子凝聚法则是利用聚电解质与带相反电荷物质之间的静电作用形成纳米结构。接着本文对通过这些方法获得的生物大分子纳米颗粒作为蛋白类药物、抗癌药物以及基因药物的载体在近年来的研究进展进行了归纳和总结,结果显示其在药物缓释体系中具有广阔的应用前景。

Biomacromolecules have attracted more and more attentions on drug carriers (especially in the application of nanoparticle drug carriers) in recent years because of their renewability,nontoxicity,biocompatibility,biodegradability and mucoadhesive ability.The common methods for the preparation of biomacromolecule-based nanopaticles,including emulsion method,self-assembly method and ionic-gelation method are introduced in this review in the first part.Among these methods,the self-assembly method and the ionic-gelation method are more promising because the emulsion method may affect the biocompatibility of the biomacromolecules to a certain extent.Since proteins contain both hydrophilic and hydrophobic segments and polysacchairde can be modified with the hydrophobic molecules,the self-assembly method is those amphiphilic biomacromolecules,for instance proteins and polysaccharide derivatives that contain both hydrophilic and hydrophobic segments,to form nanoparticles by self-assembly via electrostatic interaction,hydrophobic interaction and van der Waals' force.The ionic-gelation method is those polyelectrolytes,for instance proteins and polysaccharide that can be charged under certain condition,to form nanoparticles via the electrostatic interaction with the oppositely charged materials.It can be further divided into several concrete methods,such as ionic crosslinking,polyelectrolyte complex formation,layer-by-layer assembly and template polymerization.In the second part of this review,the progress in the application of these biomacromolecule-based nanoparticles as protein drug,anti-tumor drug,and gene drug carriers is summarized.The results show that these biomacromolecule-based nanoparticle drug carries have great potential in the drug controlled released system.

中图分类号: 

()

[1] Farokhzad O C, Langer R. ACS Nano, 2009, 3: 16—20
[2] Rosler A, Vandermeulen G W M, Klok H A. Adv. Drug Delivery Rev., 2001, 53: 95—108
[3] Wolinsky J B, Grinstaff M W. Adv. Drug Delivery Rev., 2008, 60: 1037—1055
[4] Bhattacharya R, Mukherjee P. Adv. Drug Delivery Rev., 2008, 60: 1289—1306
[5] Slowing II, Vivero-Escoto J L, Wu C W, Lin V S Y. Adv. Drug Delivery Rev., 2008, 60: 1278—1288
[6] Duncan R, Izzo L. Adv. Drug Delivery Rev., 2005, 57: 2215—2237
[7] Gaspar R, Duncan R. Adv. Drug Delivery Rev., 2009, 61: 1220—1231
[8] Vega-Villa K R, Takemoto J K, Yanez J A, Remsberg C M. Adv. Drug Delivery Rev., 2008, 60: 929—938
[9] Hirano S. Polym. Int., 1999, 48: 732—734
[10] Horan R L, Antle K, Collette A L, Huang Y Z, Moreau J E, Volloch V, Kaplan D L, Altman G H. Biomaterials, 2005, 26: 3385—3393
[11] Rubino O P, Kowalsky R, Swarbrick J. Pharm. Res., 1993, 10: 1059—1065
[12] Liu Z H, Jiao Y P, Wang Y F, Zhang Z Y. Adv. Drug Delivery Rev., 2008, 60: 1650—1662
[13] Kreuter J. Int. J. Pharm., 2007, 33: 1—10
[14] Hawkins M J, Soon-shiong P, Desai N. Adv. Drug Delivery Rev., 2008, 60: 876—885
[15] Gallo J M, Hung C T, Perrier D G. Int. J. Pharm., 1984, 22: 63—74
[16] Muller B G, Leuenberger H, Kissel T. Pharm. Res., 1996, 13: 32—37
[17] Jameela S R, Jayakrishnan A. Biomaterials, 1995, 16: 769—775
[18] Conti B, Modena T, Genta I, Pavanetto F. Drug Delivery, 1998, 5: 87—93
[19] Oliveira B F, Santana M H A, Re M I J. Chem. Eng., 2005, 22: 353—360
[20] Srisuwan Y, Srihanam P, Baimark Y J. Macromol. Sci. A, 2009, 46: 521—525
[21] Ethirajan A, Schoeller K, Musyanovych A, Ziener U, Landfester K. Biomacromolecules, 2008, 9: 2383—2389
[22] Marty J J, Oppenheim R C, Speiser P. Pharm. Acta Helvetiae, 1978, 53: 17—23
[23] Lin W, Coombes A G A, Garnett M C, Davies M C, Schacht E, Davis S S, Illum L. Pharm. Res., 1994, 11: 1588—1592
[24] Langer K, Balthasar S, Vogel V, Dinauer N, von Briesen H, Schubert D. Int. J. Pharm., 2003, 257: 169—180
[25] Weber C, Kreuter J, Langer K. Int. J. Pharm., 2000, 196: 197—200
[26] Merodio M, Arnedo A, Renedo M J, Irache J M. Eur. J. Pharm. Sci., 2001, 12: 251—259
[27] Wang G L, Siggers K, Zhang S F, Jiang H X, Xu Z H. Pharm. Res., 2008, 25: 2896—2909
[28] Balthasar S, Michaelis K, Dinauer N, von Briesen H, Kreuter J, Langer K. Biomaterials, 2005, 26: 2723—2732
[29] Azarmi S, Huang Y, Chen H, Mcouarrie S, Abrams D, Roa W, Finlay W H, Miller G G, Lobenberg R. J. Pharm. Pharm. Sci., 2006, 9: 124—132
[30] Mita K, Ichimura S, James T C. J. Mol. Evol., 1994, 38: 583—592
[31] Valluzzi R, He S J, Gido S P, Kaplan D. Int. J. Biol. Macromol., 1999, 24: 227—236
[32] Wang X Q, Yucel T, Lu Q, Hu X, Kaplan D L. Biomaterials, 2010, 31: 1025—1035
[33] Zhang Y Q, Shen W D, Xiang R L, Zhuge L J, Gao W J. J. Nanopart. Res., 2007, 9: 885—900
[34] Cao Z B, Chen X, Yao J R, Huang L, Shao Z Z. Soft Matter, 2007, 3: 910—915
[35] Lee K Y, Jo W H, Kwon I C, Kim Y H, Jeong S Y. Langmuir, 1998, 14: 2329—2332
[36] Dufes C, Schatzlein A G, Tetley L, Gray A I, Watson D G, Olivier J C, Couet W, Uchegbu I F. J. Pharm. Res., 2000, 17: 1250—1258
[37] Kwon S, Park J H, Chung H, Kwon I C, Jeong S Y, Kim I S. Langmuir, 2003, 19: 10188—10193
[38] Park J S, Han T H, Lee K Y, Han S S, Hwang J J, Moon D H, Kim S Y, Cho Y W. J. Control. Release, 2006, 115: 37—45
[39] Miwa A, Ishibe A, Nakano M, Yamahira T, Itai S, Jinno S, Kawahara H. Pharm. Res., 1998, 15: 1844—1850
[40] Zhang L Y, Sun M J, Guo R, Jiang Z P, Liu Y, Jiang X Q, Yang C Z. J. Nanosci. Nanotech., 2006, 6: 2912—2920
[41] Zhao Z M, He M, Yin L C, Bao J M, Shi L L, Wang B Q, Tang C, Yin C H. Biomacromolecules, 2009, 10: 565—572
[42] Hornig S, Heinze T. Carbohyd. Polym., 2007, 68: 280—286
[43] Hornig S, Heinze T. Biomacromolecules, 2008, 9: 1487—1492
[44] Reis A V, Guilherme M R, Paulino A T, Muniz E C, Mattoso L H C, Tarnbourgi E B. Langmuir, 2009, 25: 2473—2478
[45] Choi K Y, Min K H, Na J H, Choi K, Kim K, Park J H, Kwon I C, Jeong S Y. J. Mater. Chem., 2009, 19: 4102—4107
[46] Calvo P, RemunanLopez C, VilaJato J L, Alonso M J. J. Appl. Polym. Sci., 1997, 63: 125—132
[47] Janes K A, Fresneau M P, Marazuela A, Fabra A, Alonso M J. J. Control. Release, 2001, 73: 255—267
[48] Vila A, Sanchez A, Tobio M, Calvo P, Alonso M J. J. Control. Release, 2002, 78: 15—24
[49] Lopez-Leon T, Carvalho E L S, Seijo B, Ortega-Vinuesa J L, Bastos-Gozlez D. J. Colloid. Interf. Sci., 2005, 283: 344—351
[50] Amidi M, Romeijn S G, Borchard G, Junginger H E, Hennink W E, Jiskoot W. J. Control. Release, 2006, 111: 107—116
[51] Zahoor A, Sharma S, Khuller G K. Int. J. Antimicrob. Agents, 2005, 26: 298—303
[52] Sarmento B, Martins S, Ribeiro A, Veiga F, Neufeld R, Ferreira D. Int. J. Pept. Res. Ther., 2006, 12: 131—138
[53] Chen Y, Mohanraj V J, Parkin J E. 5th Australian Peptide Conference: Australia, 2003. 621—629
[54] Chen Y, Mohanraj V J, Wang F, Benson H A E. AAPS PharmSciTech, 2007, 8: art. no. 98
[55] Goycoolea F M, Lollo G, Remunan-Lopez C, Quaglia F, Alonso M J. Biomacromolecules, 2009, 10: 1736—1743
[56] Hu J H, Yu S Y, Yao P. Langmuir, 2007, 23: 6358—6364
[57] Yu S Y, Hu J H, Pan X Y, Yao P. Langmuir, 2006, 22: 2754—2759
[58] Itoh Y, Matsusaki M, Kida T, Akashi M. Biomacromolecules, 2006, 7: 2715—2718
[59] Shenoy D B, Sukhorukov G B. Bioscience, 2005, 5: 451—458
[60] Haidar Z S, Hamdy R C, Tabrizian M. Biomaterials, 2008, 29: 1207—1215
[61] Hu Y, Jiang X Q, Ding Y, Chen Q, Yang C Z. Adv. Mater., 2004, 16: 933—937
[62] De Moura M R, Aouada F A, Mattoso L H C J. Colloid Interf. Sci., 2008, 321: 477—483
[63] Wang Y S, Zhang Y W, Du W P, Wu C X, Zhao J X. J. Colloid Interf. Sci., 2009, 334: 153—160
[64] Lin Y H, Mi F L, Chen C T, Chang W C, Peng S F, Liang H F, Sung H W. Biomacromolecules, 2007, 8: 146—152
[65] Sarmento B, Ribeiro A, Veiga F, Ferreira D, Neufeld R. Biomacromolecules, 2007, 8: 3054—3060
[66] Yan H B, Zhang Y Q, Ma Y L, Zhou L X. J. Nanopart. Res., 2009, 11: 1937—1946
[67] Wang X Q, Wenk E, Matsumoto A, Meinel L, Li C M, Kaplan D L. J. Control. Release, 2007, 117: 360—370
[68] Min K H, Park K, Kim Y S, Bae S M, Lee S, Jo H G, Park R W, Kim I S, Jeong S Y, Kim K, Kwon I C. J. Control. Release, 2008, 127: 208—218
[69] Kim J H, Kim Y S, Kim S, Park J H, Kim K, Choi K, Chung H, Jeong S Y, Park R W, Kim I S, Kwon I C. J. Control. Release, 2006, 111: 228—234
[70] Park J H, Kwon S, Lee M, Chung H, Kim J H, Kim Y S, Park R W, Kim I S, Seo S B, Kwon I C, Jeong S Y. Biomaterials, 2006, 27: 119—126
[71] Tseng C L, Su W Y, Yen K C, Yang K C, Lin F H. Biomaterials, 2009, 30: 3476—3485
[72] Truong-Le V L, August J T, Leong K W. Hum. Gene Ther., 1998, 9: 1709—1717
[73] Truong-Le V L, Walsh S M, Schweibert E, Mao H Q, Guggino W B. Arch. Biochem. Biophys., 1999, 361: 47—56
[74] Corsi K, Chellat F, Yahia L, Fernandes J C. Biomaterials, 2003, 24: 1255—1264

[1] 杨强强, 李川, 于淑娴, 范书华, 王月霞, 洪敏. 纳米载体在共负载siRNA及化疗药物对逆转肿瘤多药耐药性方面的应用[J]. 化学进展, 2021, 33(10): 1900-1916.
[2] 官启潇, 郭和泽, 窦红静. 细胞膜修饰的纳米载体与肿瘤免疫治疗[J]. 化学进展, 2021, 33(10): 1823-1840.
[3] 龚兆翠, 尹超, 赵惠, 卢晓梅, 范曲立, 黄维. 光控纳米载体在药物释放中的应用[J]. 化学进展, 2016, 28(9): 1387-1396.
[4] 王荣民, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵. 天然高分子复合羟基磷灰石材料的制备与应用[J]. 化学进展, 2016, 28(6): 885-895.
[5] 任天斌, 侠文娟, 吴畏, 李永勇*. 刺激响应型聚合物前药[J]. 化学进展, 2013, 25(05): 775-784.
[6] 罗忠, 蔡开勇, 张蓓璐, 段霖, 刘艾萍, 龚端. 介孔硅纳米储存器在智能药物释放系统的应用[J]. 化学进展, 2011, 23(11): 2326-2338.
[7] 夏文健, 孟令杰, 刘丽, 路庆华. 贵金属纳米粒子修饰碳纳米管的研究[J]. 化学进展, 2010, 22(12): 2298-2308.
[8] 刘琼 杨婷婷 高庆 袁建军 程时远. 聚合物/SiO2杂化材料在药物控制释放中的应用*[J]. 化学进展, 2009, 21(12): 2689-2695.
[9] 李杉杉,何华,焦庆才,Chung,Pham-Huy. 碳纳米管在药物和基因转运领域的研究进展[J]. 化学进展, 2008, 20(11): 1798-1803.
[10] 周志军,蔡荣锡,柳能军,张林,陈欢林. 含环糊精膜的制备与应用*[J]. 化学进展, 2007, 19(9): 1436-1442.
阅读次数
全文


摘要

基于生物大分子的纳米药物载体