
近红外稀土荧光在功能材料领域的研究进展
Near-Infrared Lanthanide Luminescence for Functional Materials
稀土近红外荧光材料具有特征发射峰尖锐、光稳定性好和毒性低等特点。近年来,稀土近红外荧光材料在光纤通讯、激光系统、生物分析传感器及生物成像等方面的应用价值日渐突显,引起了研究者们的极大关注。特别是稀土近红外荧光材料已发展成一种新兴的荧光标记材料,并有希望替代有机染料和量子点应用于生物分析和医学成像。基于稀土近红外发光的荧光探针具有低自荧光背景、宽斯托克斯位移、强抑制光漂白、深层穿透组织和短暂分辨的优势,有潜力成为高灵敏度、高选择性的检测手段。利用稀土离子制备的各种荧光材料,如上转换纳米晶、介孔材料、脂基胶体、离子液体、离子胶体、金属有机框架等,由于荧光敏化机理不同,其近红外荧光性能也各有千秋。然而,稀土近红外荧光的真正挑战仍是提高近红外发光的量子效率。本文结合近红外荧光领域的最新进展,综述了不同的稀土近红外荧光设计思路,介绍了各种近红外稀土荧光功能材料,阐述了稀土离子在近红外荧光功能材料中的优势,并展望了稀土近红外荧光材料的发展前景。
Near-infrared (NIR) luminescent lanthanide materials are attractive due to their unique optical and chemical features, such as characteristic sharp luminescence, good photostability and low toxicity. Recently, startling interests for NIR luminescent lanthanide materials have been attracted for their highlighted value in the applications of fiber-optic communications, laser systems, bio-sensing and bio-imaging analysis, etc. NIR luminescent lanthanide materials have been developed as a new class of luminescent optical labels that have become promising alternatives to organic fluorophores and quantum dots for applications in biological assays and medical imaging. These lanthanide luminescent probes offer low autofluorescence background, large Stokes shifts, high resistance to photobleaching, high penetration depth and temporal resolution; such techniques also show potential for improving the selectivity and sensitivity of detecting methods. Different kinds of luminescent materials fabricated by lanthanides (upconversion nanocrystals, mesoporous materials, micelles, lanthanide metal-organic framework, ionic liquids and ionogels) exhibit various NIR luminescent properties, which are attributed to the distinct mechanisms of sensitisation. However, the sensitisation of NIR luminescence remains a real challenge. By summarizing the latest developments in the field of NIR lanthanide luminescent materials in this review, we show distinct design ideas on the NIR lanthanide luminescence, describe various NIR luminescent lanthanide functional materials, and evaluate the features and advantages of near-infrared luminescent materials for the developing trends in the future.
稀土 / 近红外 / 荧光 / 设计 / 功能材料 {{custom_keyword}} /
lanthanides / near-infrared(NIR) / luminescence / design / functional materials {{custom_keyword}} /
[1] Pogue B, Jiang S D, Dehghani H. Alternative Breast Imaging. Chapter 10. Boston: Springer, 2005. 201—226
[2] Wu S, Han G, Milliron D J, Aloni S, Altoe V, Talapin D V, Cohen B E, Schuck P J. Proc. Nat. Acad. Sci. USA, 2009, 106: 10917—10921
[3] Bünzli J C G. Chem. Rev., 2010, 110: 2729—2755
[4] Moore E G, Samuel A P S, Raymond K N. Acc. Chem. Res., 2009, 42: 542—552
[5] Sinha S P. Systematics and the Properties of the Lanthanides. Braunlage: Springer, 1983
[6] Slooff L H, van Blaaderen A, Polman A, Hebbink G A, Klink S I, van Veggel F C J M, Reinhoudt D N, Hofstraat J W. J. Appl. Phys., 2002, 91: 3955—3980
[7] Teh S K, Zheng W, Ho K Y, Teh M, Yeoh K G, Huang Z. Br. J. Cancer, 2008, 98: 457—465
[8] Werts M H V, Woudenberg R H, Emmerink P G, Gassel R V, Hofstraat J W, Verhoeven J W. Angew. Chem. Int. Ed., 2000, 39: 4542—4544
[9] Ronda C R. Luminescence: From Theory to Applications. Aachen: Wiley, 2007
[10] Wang F, Liu X G. Chem. Soc. Rev., 2009, 38: 976—989
[11] Psaila N D, Thomson R R, Bookey H T, Kar A K, Chiodo N, Osellame R, Cerullo G, Jha A, Shen S. Appl. Phys. Lett., 2007, 90: 131102—131103
[12] Kuriki K, Koike Y, Okamoto Y. Chem. Rev., 2002, 102:2347—2356
[13] Xie R J, Hirosaki N. Sci. Technol. Adv. Mat., 2007, 8: 588—600
[14] Stouwdam J W, van Veggel F C J M. Nano Lett., 2002, 2: 733—737
[15] Bo S H, Hu J, Chen Z, Wang Q, Xu G M, Liu X H, Zhen Z. Appl. Phys. B, 2009, 97: 665—669
[16] Hebbink G A, Stouwdam J W, Reinhoudt D N, van Veggel F C J M. Adv. Mater., 2002, 14: 1147—1150
[17] Rahman P, Green M. Nanoscale, 2009, 1: 214—224
[18] Yu X F, Chen L D, Li M, Xie M Y, Zhou L, Li Y, Wang Q Q. Adv. Mater., 2008, 20: 4118—4123
[19] Gao X, Cui Y, Levenson R M, Chung L W K, Nie S. Nat. Biotech., 2004, 22: 969—976
[20] Wang F, Tan W B, Zhang Y, Fan X P, Wang M Q. Nanotechnology, 2006, 17: R1—R13
[21] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G. Nature, 2010, 463: 1061—1065
[22] Park Y I, Kim J H, Lee K T, Jeon K S, Na H B, Yu J H, Kim H M, Lee N, Choi S H, Baik S I, Kim H, Park S P, Park B J, Kim Y W, Lee S H, Yoon S Y, Song I C, Moon W K, Suh Y D, Hyeon T. Adv. Mater., 2009, 21: 4467—4471
[23] Wu J C, Tian Q W, Hu H, Xia Q, Zou Y, Li F Y, Yi T, Huang C H. Chem. Commun., 2009, 4100—4102
[24] Yu M X, Li F Y, Chen Z G, Hu H, Zhan C, Yang H, Huang C H. Anal. Chem., 2009, 81: 930—935
[25] Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F. Biomaterials, 2010, 31: 3287—3295
[26] Nyk M, Kumar R, Ohulchanskyy T Y, Bergey E J, Prasad P N. Nano Lett., 2008, 8: 3834—3838
[27] Chen G, Ohulchanskyy T Y, Kumar R, Agren H, Prasad P N. ACS Nano, 2010, 4: 3163—3168
[28] Crosby G A, Whan R E, Alire R M. J. Chem. Phys., 1961, 34: 743—748
[29] Crosby G A, Whan R E, Freeman J J. J. Phys. Chem., 1962, 66: 2493—2499
[30] Whan R E, Crosby G A. J. Mol. Spectrosc., 1962, 8: 315—327
[31] Binnemans K, Grller-Walrand C. Chem. Rev., 2002, 102: 2303—2345
[32] Bünzli J C G, Piguet C. Chem. Soc. Rev., 2005, 34: 1048—1077
[33] Binnemans K. Chem. Rev., 2009, 109: 4283—4374
[34] Eliseeva S V, Bünzli J C G. Chem. Soc. Rev., 2010, 39: 189—227
[35] Shavaleev N M, Scopelliti R, Gumy F, Bünzli J C G. Inorg. Chem., 2009, 48: 7937—7946
[36] Hebbink G A, Reinhoudt D N, van Veggel F C J M. Eur. J. Org. Chem., 2001, 4101—4106
[37] Glover P B, Bassett A P, Nockemann P, Kariuki B M, Deun R V, Pikramenou Z. Chem. Eur. J., 2007, 13: 6308—6320
[38] Romanelli M, Kumar G A, Emge T J, Riman R E, Brennan J G. Angew. Chem. Int. Ed., 2008, 47: 6049—6051
[39] Binnemans K. in Handbook on the Physics and Chemistry of Rare Earths. Vol 35, Elsevier, 2005. 107—272
[40] Baek N S, Kim Y H, Eom Y K, Oh J H, Kim H K, Aebischer A, Gumy F, Chauvin A S, Bünzli J C G. Dalton Trans., 2010, 39: 1532—1538
[41] Zhang J, Petoud S. Chem. Eur. J., 2008, 14: 1264—1272
[42] Albrecht M, Fiege M, Osetska O. Coord. Chem. Rev., 2008, 252: 812—824
[43] Shavaleev N M, Scopelliti R, Gumy F, Bünzli J C G. Inorg. Chem., 2009, 48: 2908—2918
[44] Nonat A, Imbert D, Pecaut J, Giraud M, Mazzanti M. Inorg. Chem., 2009, 48: 4207—4218
[45] Albrecht M, Osetska O, Klankermayer J, Frhlich R, Gumy F, Bünzli J C G. Chem. Commun., 2007, 1834—1836
[46] Deun R V, Fias P, Nockemann P, Hecke K V, Meervelt L V, Binnemans K. Eur. J. Inorg. Chem., 2007, 302—305
[47] Shavaleev N M, Scopelliti R, Gumy F D R, Bünzli J C G. Inorg. Chem., 2008, 47: 9055—9068
[48] Shavaleev N M, Scopelliti R, Gumy F, Bünzli J C G. Inorg. Chem., 2009, 48: 7937—7946
[49] Oxley D S, Walters R W, Copenhafer J E, Meyer T Y, Petoud S P, Edenborn H M. Inorg. Chem., 2009, 48: 6332—6334
[50] Cable M L, Kirby J P, Levine D J, Manary M J, Gray H B, Ponce A. J. Am. Chem. Soc., 2009, 131: 9562—9570
[51] Belousoff M J, Ung P, Forsyth C M, Tor Y, Spiccia L, Graham B. J. Am. Chem. Soc., 2009, 131: 1106—1114
[52] Pizzoferrato R, Francini R, Pietrantoni S, Paolesse R, Mandoj F, Monguzzi A, Meinardi F. J. Phys. Chem. A, 2010, 114: 4163—4168
[53] Bünzli J C G, Piguet C. Chem. Soc. Rev., 2005, 34: 1048—1077
[54] Alexeev Y E, Kharisov B I, García T C H, Garnovskii A D. Coord. Chem. Rev., 2010, 254: 794—831
[55] Zhu X J, Wong W K, Guo J P, Wong W Y, Zhang J P. Eur. J. Inorg. Chem., 2008, 3515—3523
[56] He H S, Sykes A G. Inorg. Chem. Commun., 2008, 11: 1304—1307
[57] Jones J E, Pope S J A. Dalton Trans., 2009, 8421—8425
[58] Gregolinski J, Starynowicz P, Hua K T, Lunkley J L, Muller G, Lisowski J. J. Am. Chem. Soc., 2008, 130: 17761—17773
[59] Shavaleev N M, Moorcraft L P, Pope S J A, Bell Z R, Faulkner S, Ward M D. Chem. Eur. J., 2003, 9: 5283—5291
[60] Imbert D, Cantuel M, Bünzli J C G, Bernardinelli G, Piguet C. J. Am. Chem. Soc., 2003, 125: 15698—15699
[61] Li X L, Shi L X, Zhang L Y, Wen H M, Chen Z N. Inorg. Chem., 2007, 46: 10892—10900
[62] Xu H B, Zhang L Y, Chen X M, Li X L, Chen Z N. Crystal Growth & Design, 2009, 9: 569—576
[63] Warren S C, Messina L C, Slaughter L S, Kamperman M, Zhou Q, Gruner S M, DiSalvo F J, Wiesner U. Science, 2008, 320: 1748—1752
[64] Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P, Somorjai G A. Nat. Mater., 2009, 8: 126—131
[65] Lee C H, Cheng S H, Wang Y J, Chen Y C, Chen N T, Souris J, Chen C T, Mou C Y, Yang C S, Lo L W. Adv. Funct. Mater., 2009, 19: 215—222
[66] Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Angew. Chem. Int. Ed., 2008, 47: 8438—8441
[67] Rosenholm J, Sahlgren C, Lindén M. J. Mater. Chem., 2010, 20: 2707—2713
[68] Sun L N, Yu J B, Zhang H J, Meng Q G, Ma E, Peng C Y, Yang K Y. Microporous Mesoporous Mater., 2007, 98: 156—165
[69] Sun L N, Zhang H J, Yu J B, Yu S Y, Peng C Y, Dang S, Guo X M, Feng J. Langmuir, 2008, 24: 5500—5507
[70] Taylor K M L, Kim J S, Rieter W J, An H, Lin W, Lin W. J. Am. Chem. Soc., 2008, 130: 2154—2155
[71] Feng J, Song S Y, Deng R P, Fan W Q, Zhang H J. Langmuir, 2009, 26: 3596—3600
[72] Lee J E, Lee N, Kim H, Kim J, Choi S H, Kim J H, Kim T, Song I C, Park S P, Moon W K, Hyeon T. J. Am. Chem. Soc., 2009, 132: 552—557
[73] dos Santos C M G, Harte A J, Quinn S J, Gunnlaugsson T. Coord. Chem. Rev., 2008, 252: 2512—2527
[74] Uchiyama S, McClean G D, Iwai K, de Silva A P. J. Am. Chem. Soc., 2005, 127: 8920—8921
[75] Diaz-Fernandez Y, Foti F, Mangano C, Pallavicini P, Patroni S, Perez-Gramatges A, Rodriguez-Calvo S. Chem. Eur. J., 2006, 12: 921—930
[76] Bonnet C S, Pellegatti L, Buron F, Shade C M, Villette S, Kubí Acˇ ek V, Guillaumet G, Suzenet F, Petoud S, Tóth E. Chem. Commun., 2010, 124—126
[77] Hong Y, Lam J W Y, Tang B Z. Chem. Commun., 2009, 4332—4353
[78] Pellegatti L, Zhang J, Drahos B, Villette S, Suzenet F, Guillaumet G, Petoud S, Tóth . Chem. Commun., 2008, 6591—6593
[79] Kirchner B. Ionic Liquids. Berlin: Springer, 2010. 1—339
[80] Binnemans K. Chem. Rev., 2007, 107: 2592—2614
[81] Stumpf S, Billard I, Panak P J, Mekki S. Dalton Trans., 2007, 240—248
[82] Stumpf S, Billard I, Gaillard C, Panak P J, Dardenne K. Inorg. Chem., 2008, 47: 4618—4626
[83] Lunstroot K, Baeten L, Nockemann P, Martens J, Verlooy P, Ye X, Grller-Walrand C, Binnemans K, Driesen K. J. Phys. Chem. C, 2009, 113: 13532—13538
[84] Lunstroot K, Nockemann P, van Hecke K, van Meervelt L, Grller-Walrand C, Binnemans K, Driesen K. Inorg. Chem., 2009, 48: 3018—3026
[85] Nockemann P, Beurer E, Driesen K, Deun R V, Hecke K V, Meervelt L V, Binnemans K. Chem. Commun., 2005, 4354—4356
[86] Lunstroot K, Driesen K, Nockemann P, Grller-Walrand C, Binnemans K, Bellayer S, le Bideau J, Vioux A. Chem. Mat., 2006, 18: 5711—5715
[87] Lunstroot K, Driesen K, Nockemann P, Hecke K V, Meervelt L V, Grller-Walrand C, Binnemans K, Bellayer S, Viau L, Bideau J L, Vioux A. Dalton Trans., 2009, 298—306
[88] Feng Y, Li H R, Gan Q Y, Wang Y G, Liu B Y, Zhang H J. J. Mater. Chem., 2010, 20: 972—975
[89] Gbel R, Friedrich A, Taubert A. Dalton Trans., 2010, 39: 603—611
[90] Deng H, Doonan C J, Furukawa H, Ferreira R B, Towne J, Knobler C B, Wang B, Yaghi O M. Science, 2010, 327: 846—850
[91] Jain P, Ramachandran V, Clark R J, Zhou H D, Toby B H, Dalal N S, Kroto H W, Cheetham A K. J. Am. Chem. Soc., 2009, 131: 13625—13627
[92] Lin X, Telepeni I, Blake A J, Dailly A, Brown C M, Simmons J M, Zoppi M, Walker G S, Thomas K M, Mays T J, Hubberstey P, Champness N R, Schrder M. J. Am. Chem. Soc., 2009, 131: 2159—2171
[93] Zaworotko M J. Nature, 2008, 451: 410—411
[94] Han S S, Mendoza-Cortés J L, Goddard W A Ⅲ. Chem. Soc. Rev., 2009, 38: 1460—1476
[95] Düren T, Bae Y S, Snurr R Q. Chem. Soc. Rev., 2009, 38: 1237—1247
[96] Maspoch D, Ruiz-Molina D, Veciana J. Chem. Soc. Rev., 2007, 36: 770—818
[97] Suh M P, Cheon Y E, Lee E Y. Coord. Chem. Rev., 2008, 252: 1007—1026
[98] Chen B L, Yang Y, Zapata F, Qian G D, Luo Y S, Zhang J H, Lobkovsky E B. Inorg. Chem., 2006, 45: 8882—8886
[99] Haquin V, Gumy F, Daiguebonne C, Bünzli J C, Guillou O. Eur. J. Inorg. Chem., 2009, 4491—4497
[100] Veith M, Belot C, Huch V, Cui H L, Guyard L, Knorr M, Wickleder C. Eur. J. Inorg. Chem., 2010, 879—889
[101] Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Chem. Soc. Rev., 2009, 38: 1330—1352
[102] Doty F P, Bauer C A, Skulan A J, Grant P G, Allendorf M D. Adv. Mater., 2009, 21: 95—101
[103] White K A, Chengelis D A, Gogick K A, Stehman J, Rosi N L, Petoud S P. J. Am. Chem. Soc., 2009, 131: 18069—18071
[104] Shavaleev N M, Gumy F D R, Scopelliti R, Bünzli J C G. Inorg. Chem., 2009, 48: 5611—5613
[105] Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J. Biomaterials, 2009, 30: 4786—47959, 4491—4497
[100] Veith M, Belot C, Huch V, Cui H L, Guyard L, Knorr M, Wickleder C. Eur. J. Inorg. Chem., 2010, 879—889
[101] Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Chem. Soc. Rev., 2009, 38: 1330—1352
[102] Doty F P, Bauer C A, Skulan A J, Grant P G, Allendorf M D. Adv. Mater., 2009, 21: 95—101
[103] White K A, Chengelis D A, Gogick K A, Stehman J, Rosi N L, Petoud S P. J. Am. Chem. Soc., 2009, 131: 18069—18071
[104] Shavaleev N M, Gumy F D R, Scopelliti R, Bünzli J C G. Inorg. Chem., 2009, 48: 5611—5613
[105] Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J. Biomaterials, 2009, 30: 4786—4795
国家自然科学基金项目(No.21001072)、上海市教育委员会重点学科建设项目(No.J50102)、上海市科委项目(No.1052nm03400)和上海大学创新基金(A.10-0110-09-906)资助
/
〈 |
|
〉 |