English
新闻公告
More
化学进展 2011, Vol. 23 Issue (01): 153-164 前一篇   后一篇

• 综述与评论 •

近红外稀土荧光在功能材料领域的研究进展

刘政, 孙丽宁, 施利毅, 张登松   

  1. 上海大学纳米科学与技术研究中心 上海 200444
  • 收稿日期:2010-05-01 修回日期:2010-09-01 出版日期:2011-01-20 发布日期:2011-09-02
  • 作者简介:e-mail:lnsun@shu.edu.cn; shiliyi@shu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21001072)、上海市教育委员会重点学科建设项目(No.J50102)、上海市科委项目(No.1052nm03400)和上海大学创新基金(A.10-0110-09-906)资助

Near-Infrared Lanthanide Luminescence for Functional Materials

Liu Zheng, Sun Lining, Shi Liyi, Zhang Dengsong   

  1. Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, China
  • Received:2010-05-01 Revised:2010-09-01 Online:2011-01-20 Published:2011-09-02

稀土近红外荧光材料具有特征发射峰尖锐、光稳定性好和毒性低等特点。近年来,稀土近红外荧光材料在光纤通讯、激光系统、生物分析传感器及生物成像等方面的应用价值日渐突显,引起了研究者们的极大关注。特别是稀土近红外荧光材料已发展成一种新兴的荧光标记材料,并有希望替代有机染料和量子点应用于生物分析和医学成像。基于稀土近红外发光的荧光探针具有低自荧光背景、宽斯托克斯位移、强抑制光漂白、深层穿透组织和短暂分辨的优势,有潜力成为高灵敏度、高选择性的检测手段。利用稀土离子制备的各种荧光材料,如上转换纳米晶、介孔材料、脂基胶体、离子液体、离子胶体、金属有机框架等,由于荧光敏化机理不同,其近红外荧光性能也各有千秋。然而,稀土近红外荧光的真正挑战仍是提高近红外发光的量子效率。本文结合近红外荧光领域的最新进展,综述了不同的稀土近红外荧光设计思路,介绍了各种近红外稀土荧光功能材料,阐述了稀土离子在近红外荧光功能材料中的优势,并展望了稀土近红外荧光材料的发展前景。

Near-infrared (NIR) luminescent lanthanide materials are attractive due to their unique optical and chemical features, such as characteristic sharp luminescence, good photostability and low toxicity. Recently, startling interests for NIR luminescent lanthanide materials have been attracted for their highlighted value in the applications of fiber-optic communications, laser systems, bio-sensing and bio-imaging analysis, etc. NIR luminescent lanthanide materials have been developed as a new class of luminescent optical labels that have become promising alternatives to organic fluorophores and quantum dots for applications in biological assays and medical imaging. These lanthanide luminescent probes offer low autofluorescence background, large Stokes shifts, high resistance to photobleaching, high penetration depth and temporal resolution; such techniques also show potential for improving the selectivity and sensitivity of detecting methods. Different kinds of luminescent materials fabricated by lanthanides (upconversion nanocrystals, mesoporous materials, micelles, lanthanide metal-organic framework, ionic liquids and ionogels) exhibit various NIR luminescent properties, which are attributed to the distinct mechanisms of sensitisation. However, the sensitisation of NIR luminescence remains a real challenge. By summarizing the latest developments in the field of NIR lanthanide luminescent materials in this review, we show distinct design ideas on the NIR lanthanide luminescence, describe various NIR luminescent lanthanide functional materials, and evaluate the features and advantages of near-infrared luminescent materials for the developing trends in the future.

中图分类号: 

()

[1] Pogue B, Jiang S D, Dehghani H. Alternative Breast Imaging. Chapter 10. Boston: Springer, 2005. 201—226
[2] Wu S, Han G, Milliron D J, Aloni S, Altoe V, Talapin D V, Cohen B E, Schuck P J. Proc. Nat. Acad. Sci. USA, 2009, 106: 10917—10921
[3] Bünzli J C G. Chem. Rev., 2010, 110: 2729—2755
[4] Moore E G, Samuel A P S, Raymond K N. Acc. Chem. Res., 2009, 42: 542—552
[5] Sinha S P. Systematics and the Properties of the Lanthanides. Braunlage: Springer, 1983
[6] Slooff L H, van Blaaderen A, Polman A, Hebbink G A, Klink S I, van Veggel F C J M, Reinhoudt D N, Hofstraat J W. J. Appl. Phys., 2002, 91: 3955—3980
[7] Teh S K, Zheng W, Ho K Y, Teh M, Yeoh K G, Huang Z. Br. J. Cancer, 2008, 98: 457—465
[8] Werts M H V, Woudenberg R H, Emmerink P G, Gassel R V, Hofstraat J W, Verhoeven J W. Angew. Chem. Int. Ed., 2000, 39: 4542—4544
[9] Ronda C R. Luminescence: From Theory to Applications. Aachen: Wiley, 2007
[10] Wang F, Liu X G. Chem. Soc. Rev., 2009, 38: 976—989
[11] Psaila N D, Thomson R R, Bookey H T, Kar A K, Chiodo N, Osellame R, Cerullo G, Jha A, Shen S. Appl. Phys. Lett., 2007, 90: 131102—131103
[12] Kuriki K, Koike Y, Okamoto Y. Chem. Rev., 2002, 102:2347—2356
[13] Xie R J, Hirosaki N. Sci. Technol. Adv. Mat., 2007, 8: 588—600
[14] Stouwdam J W, van Veggel F C J M. Nano Lett., 2002, 2: 733—737
[15] Bo S H, Hu J, Chen Z, Wang Q, Xu G M, Liu X H, Zhen Z. Appl. Phys. B, 2009, 97: 665—669
[16] Hebbink G A, Stouwdam J W, Reinhoudt D N, van Veggel F C J M. Adv. Mater., 2002, 14: 1147—1150
[17] Rahman P, Green M. Nanoscale, 2009, 1: 214—224
[18] Yu X F, Chen L D, Li M, Xie M Y, Zhou L, Li Y, Wang Q Q. Adv. Mater., 2008, 20: 4118—4123
[19] Gao X, Cui Y, Levenson R M, Chung L W K, Nie S. Nat. Biotech., 2004, 22: 969—976
[20] Wang F, Tan W B, Zhang Y, Fan X P, Wang M Q. Nanotechnology, 2006, 17: R1—R13
[21] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H, Liu X G. Nature, 2010, 463: 1061—1065
[22] Park Y I, Kim J H, Lee K T, Jeon K S, Na H B, Yu J H, Kim H M, Lee N, Choi S H, Baik S I, Kim H, Park S P, Park B J, Kim Y W, Lee S H, Yoon S Y, Song I C, Moon W K, Suh Y D, Hyeon T. Adv. Mater., 2009, 21: 4467—4471
[23] Wu J C, Tian Q W, Hu H, Xia Q, Zou Y, Li F Y, Yi T, Huang C H. Chem. Commun., 2009, 4100—4102
[24] Yu M X, Li F Y, Chen Z G, Hu H, Zhan C, Yang H, Huang C H. Anal. Chem., 2009, 81: 930—935
[25] Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F. Biomaterials, 2010, 31: 3287—3295
[26] Nyk M, Kumar R, Ohulchanskyy T Y, Bergey E J, Prasad P N. Nano Lett., 2008, 8: 3834—3838
[27] Chen G, Ohulchanskyy T Y, Kumar R, Agren H, Prasad P N. ACS Nano, 2010, 4: 3163—3168
[28] Crosby G A, Whan R E, Alire R M. J. Chem. Phys., 1961, 34: 743—748
[29] Crosby G A, Whan R E, Freeman J J. J. Phys. Chem., 1962, 66: 2493—2499
[30] Whan R E, Crosby G A. J. Mol. Spectrosc., 1962, 8: 315—327
[31] Binnemans K, Grller-Walrand C. Chem. Rev., 2002, 102: 2303—2345
[32] Bünzli J C G, Piguet C. Chem. Soc. Rev., 2005, 34: 1048—1077
[33] Binnemans K. Chem. Rev., 2009, 109: 4283—4374
[34] Eliseeva S V, Bünzli J C G. Chem. Soc. Rev., 2010, 39: 189—227
[35] Shavaleev N M, Scopelliti R, Gumy F, Bünzli J C G. Inorg. Chem., 2009, 48: 7937—7946
[36] Hebbink G A, Reinhoudt D N, van Veggel F C J M. Eur. J. Org. Chem., 2001, 4101—4106
[37] Glover P B, Bassett A P, Nockemann P, Kariuki B M, Deun R V, Pikramenou Z. Chem. Eur. J., 2007, 13: 6308—6320
[38] Romanelli M, Kumar G A, Emge T J, Riman R E, Brennan J G. Angew. Chem. Int. Ed., 2008, 47: 6049—6051
[39] Binnemans K. in Handbook on the Physics and Chemistry of Rare Earths. Vol 35, Elsevier, 2005. 107—272
[40] Baek N S, Kim Y H, Eom Y K, Oh J H, Kim H K, Aebischer A, Gumy F, Chauvin A S, Bünzli J C G. Dalton Trans., 2010, 39: 1532—1538
[41] Zhang J, Petoud S. Chem. Eur. J., 2008, 14: 1264—1272
[42] Albrecht M, Fiege M, Osetska O. Coord. Chem. Rev., 2008, 252: 812—824
[43] Shavaleev N M, Scopelliti R, Gumy F, Bünzli J C G. Inorg. Chem., 2009, 48: 2908—2918
[44] Nonat A, Imbert D, Pecaut J, Giraud M, Mazzanti M. Inorg. Chem., 2009, 48: 4207—4218
[45] Albrecht M, Osetska O, Klankermayer J, Frhlich R, Gumy F, Bünzli J C G. Chem. Commun., 2007, 1834—1836
[46] Deun R V, Fias P, Nockemann P, Hecke K V, Meervelt L V, Binnemans K. Eur. J. Inorg. Chem., 2007, 302—305
[47] Shavaleev N M, Scopelliti R, Gumy F D R, Bünzli J C G. Inorg. Chem., 2008, 47: 9055—9068
[48] Shavaleev N M, Scopelliti R, Gumy F, Bünzli J C G. Inorg. Chem., 2009, 48: 7937—7946
[49] Oxley D S, Walters R W, Copenhafer J E, Meyer T Y, Petoud S P, Edenborn H M. Inorg. Chem., 2009, 48: 6332—6334
[50] Cable M L, Kirby J P, Levine D J, Manary M J, Gray H B, Ponce A. J. Am. Chem. Soc., 2009, 131: 9562—9570
[51] Belousoff M J, Ung P, Forsyth C M, Tor Y, Spiccia L, Graham B. J. Am. Chem. Soc., 2009, 131: 1106—1114
[52] Pizzoferrato R, Francini R, Pietrantoni S, Paolesse R, Mandoj F, Monguzzi A, Meinardi F. J. Phys. Chem. A, 2010, 114: 4163—4168
[53] Bünzli J C G, Piguet C. Chem. Soc. Rev., 2005, 34: 1048—1077
[54] Alexeev Y E, Kharisov B I, García T C H, Garnovskii A D. Coord. Chem. Rev., 2010, 254: 794—831
[55] Zhu X J, Wong W K, Guo J P, Wong W Y, Zhang J P. Eur. J. Inorg. Chem., 2008, 3515—3523
[56] He H S, Sykes A G. Inorg. Chem. Commun., 2008, 11: 1304—1307
[57] Jones J E, Pope S J A. Dalton Trans., 2009, 8421—8425
[58] Gregolinski J, Starynowicz P, Hua K T, Lunkley J L, Muller G, Lisowski J. J. Am. Chem. Soc., 2008, 130: 17761—17773
[59] Shavaleev N M, Moorcraft L P, Pope S J A, Bell Z R, Faulkner S, Ward M D. Chem. Eur. J., 2003, 9: 5283—5291
[60] Imbert D, Cantuel M, Bünzli J C G, Bernardinelli G, Piguet C. J. Am. Chem. Soc., 2003, 125: 15698—15699
[61] Li X L, Shi L X, Zhang L Y, Wen H M, Chen Z N. Inorg. Chem., 2007, 46: 10892—10900
[62] Xu H B, Zhang L Y, Chen X M, Li X L, Chen Z N. Crystal Growth & Design, 2009, 9: 569—576
[63] Warren S C, Messina L C, Slaughter L S, Kamperman M, Zhou Q, Gruner S M, DiSalvo F J, Wiesner U. Science, 2008, 320: 1748—1752
[64] Joo S H, Park J Y, Tsung C K, Yamada Y, Yang P, Somorjai G A. Nat. Mater., 2009, 8: 126—131
[65] Lee C H, Cheng S H, Wang Y J, Chen Y C, Chen N T, Souris J, Chen C T, Mou C Y, Yang C S, Lo L W. Adv. Funct. Mater., 2009, 19: 215—222
[66] Kim J, Kim H S, Lee N, Kim T, Kim H, Yu T, Song I C, Moon W K, Hyeon T. Angew. Chem. Int. Ed., 2008, 47: 8438—8441
[67] Rosenholm J, Sahlgren C, Lindén M. J. Mater. Chem., 2010, 20: 2707—2713
[68] Sun L N, Yu J B, Zhang H J, Meng Q G, Ma E, Peng C Y, Yang K Y. Microporous Mesoporous Mater., 2007, 98: 156—165
[69] Sun L N, Zhang H J, Yu J B, Yu S Y, Peng C Y, Dang S, Guo X M, Feng J. Langmuir, 2008, 24: 5500—5507
[70] Taylor K M L, Kim J S, Rieter W J, An H, Lin W, Lin W. J. Am. Chem. Soc., 2008, 130: 2154—2155
[71] Feng J, Song S Y, Deng R P, Fan W Q, Zhang H J. Langmuir, 2009, 26: 3596—3600
[72] Lee J E, Lee N, Kim H, Kim J, Choi S H, Kim J H, Kim T, Song I C, Park S P, Moon W K, Hyeon T. J. Am. Chem. Soc., 2009, 132: 552—557
[73] dos Santos C M G, Harte A J, Quinn S J, Gunnlaugsson T. Coord. Chem. Rev., 2008, 252: 2512—2527
[74] Uchiyama S, McClean G D, Iwai K, de Silva A P. J. Am. Chem. Soc., 2005, 127: 8920—8921
[75] Diaz-Fernandez Y, Foti F, Mangano C, Pallavicini P, Patroni S, Perez-Gramatges A, Rodriguez-Calvo S. Chem. Eur. J., 2006, 12: 921—930
[76] Bonnet C S, Pellegatti L, Buron F, Shade C M, Villette S, Kubí Acˇ ek V, Guillaumet G, Suzenet F, Petoud S, Tóth E. Chem. Commun., 2010, 124—126
[77] Hong Y, Lam J W Y, Tang B Z. Chem. Commun., 2009, 4332—4353
[78] Pellegatti L, Zhang J, Drahos B, Villette S, Suzenet F, Guillaumet G, Petoud S, Tóth . Chem. Commun., 2008, 6591—6593
[79] Kirchner B. Ionic Liquids. Berlin: Springer, 2010. 1—339
[80] Binnemans K. Chem. Rev., 2007, 107: 2592—2614
[81] Stumpf S, Billard I, Panak P J, Mekki S. Dalton Trans., 2007, 240—248
[82] Stumpf S, Billard I, Gaillard C, Panak P J, Dardenne K. Inorg. Chem., 2008, 47: 4618—4626
[83] Lunstroot K, Baeten L, Nockemann P, Martens J, Verlooy P, Ye X, Grller-Walrand C, Binnemans K, Driesen K. J. Phys. Chem. C, 2009, 113: 13532—13538
[84] Lunstroot K, Nockemann P, van Hecke K, van Meervelt L, Grller-Walrand C, Binnemans K, Driesen K. Inorg. Chem., 2009, 48: 3018—3026
[85] Nockemann P, Beurer E, Driesen K, Deun R V, Hecke K V, Meervelt L V, Binnemans K. Chem. Commun., 2005, 4354—4356
[86] Lunstroot K, Driesen K, Nockemann P, Grller-Walrand C, Binnemans K, Bellayer S, le Bideau J, Vioux A. Chem. Mat., 2006, 18: 5711—5715
[87] Lunstroot K, Driesen K, Nockemann P, Hecke K V, Meervelt L V, Grller-Walrand C, Binnemans K, Bellayer S, Viau L, Bideau J L, Vioux A. Dalton Trans., 2009, 298—306
[88] Feng Y, Li H R, Gan Q Y, Wang Y G, Liu B Y, Zhang H J. J. Mater. Chem., 2010, 20: 972—975
[89] Gbel R, Friedrich A, Taubert A. Dalton Trans., 2010, 39: 603—611
[90] Deng H, Doonan C J, Furukawa H, Ferreira R B, Towne J, Knobler C B, Wang B, Yaghi O M. Science, 2010, 327: 846—850
[91] Jain P, Ramachandran V, Clark R J, Zhou H D, Toby B H, Dalal N S, Kroto H W, Cheetham A K. J. Am. Chem. Soc., 2009, 131: 13625—13627
[92] Lin X, Telepeni I, Blake A J, Dailly A, Brown C M, Simmons J M, Zoppi M, Walker G S, Thomas K M, Mays T J, Hubberstey P, Champness N R, Schrder M. J. Am. Chem. Soc., 2009, 131: 2159—2171
[93] Zaworotko M J. Nature, 2008, 451: 410—411
[94] Han S S, Mendoza-Cortés J L, Goddard W A Ⅲ. Chem. Soc. Rev., 2009, 38: 1460—1476
[95] Düren T, Bae Y S, Snurr R Q. Chem. Soc. Rev., 2009, 38: 1237—1247
[96] Maspoch D, Ruiz-Molina D, Veciana J. Chem. Soc. Rev., 2007, 36: 770—818
[97] Suh M P, Cheon Y E, Lee E Y. Coord. Chem. Rev., 2008, 252: 1007—1026
[98] Chen B L, Yang Y, Zapata F, Qian G D, Luo Y S, Zhang J H, Lobkovsky E B. Inorg. Chem., 2006, 45: 8882—8886
[99] Haquin V, Gumy F, Daiguebonne C, Bünzli J C, Guillou O. Eur. J. Inorg. Chem., 2009, 4491—4497
[100] Veith M, Belot C, Huch V, Cui H L, Guyard L, Knorr M, Wickleder C. Eur. J. Inorg. Chem., 2010, 879—889
[101] Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Chem. Soc. Rev., 2009, 38: 1330—1352
[102] Doty F P, Bauer C A, Skulan A J, Grant P G, Allendorf M D. Adv. Mater., 2009, 21: 95—101
[103] White K A, Chengelis D A, Gogick K A, Stehman J, Rosi N L, Petoud S P. J. Am. Chem. Soc., 2009, 131: 18069—18071
[104] Shavaleev N M, Gumy F D R, Scopelliti R, Bünzli J C G. Inorg. Chem., 2009, 48: 5611—5613
[105] Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J. Biomaterials, 2009, 30: 4786—47959, 4491—4497

[100] Veith M, Belot C, Huch V, Cui H L, Guyard L, Knorr M, Wickleder C. Eur. J. Inorg. Chem., 2010, 879—889

[101] Allendorf M D, Bauer C A, Bhakta R K, Houk R J T. Chem. Soc. Rev., 2009, 38: 1330—1352

[102] Doty F P, Bauer C A, Skulan A J, Grant P G, Allendorf M D. Adv. Mater., 2009, 21: 95—101

[103] White K A, Chengelis D A, Gogick K A, Stehman J, Rosi N L, Petoud S P. J. Am. Chem. Soc., 2009, 131: 18069—18071

[104] Shavaleev N M, Gumy F D R, Scopelliti R, Bünzli J C G. Inorg. Chem., 2009, 48: 5611—5613

[105] Yang P, Quan Z, Hou Z, Li C, Kang X, Cheng Z, Lin J. Biomaterials, 2009, 30: 4786—4795

 

[1] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[4] 傅安辰, 毛彦佳, 王宏博, 曹志娟. 基于二氧杂环丁烷骨架的化学发光探针发展和应用研究[J]. 化学进展, 2023, 35(2): 189-205.
[5] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[6] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[7] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[8] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[9] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[10] 陆峰, 赵婷, 孙晓军, 范曲立, 黄维. 近红外二区发光稀土纳米材料的设计及生物成像应用[J]. 化学进展, 2022, 34(6): 1348-1358.
[11] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[12] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[13] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[14] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[15] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.