English
新闻公告
More
化学进展 2011, Vol. 23 Issue (01): 136-152 前一篇   后一篇

• 综述与评论 •

小分子有机电致发光器件和材料的研究及应用

密保秀1,2, 王海珊1, 高志强1, 王旭鹏1, 陈润锋2, 黄维2   

  1. 1. 江苏省平板显示与固体照明工程中心 南京邮电大学材料科学与工程学院 南京 210046;
    2. 江苏省有机电子与信息显示重点实验室 南京邮电大学先进材料研究院(IAM) 南京 210046
  • 收稿日期:2010-05-01 修回日期:2010-07-01 出版日期:2011-01-20 发布日期:2011-09-02
  • 作者简介:e-mail:iamzqgao@njupt.edu.cn; iamwhuang@njupt.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.20974046)、国家重点基础研究发展计划(973)项目(No.2009CB930600)、国家教育部新世纪杰出人才基金项目(No.NCET-08-0697)、江苏省高等教育自然科学基金项目(Grant 08KJB430011)和南京邮电大学项目(No.207162)资助

Development of Devices and Materials for Small Molecular Organic Light-emitting Diodes and Hurdles for Applications

Mi Baoxiu1,2, Wang Haishan1, Gao Zhiqiang1, Wang Xupeng1, Chen Runfeng2, Huang Wei2   

  1. 1. Jiangsu Engineering Center for Plate Displays & Solid State Lighting, School of Materials Science & Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210046, China;
    2. Jiangsu Key Laboratory for Organic Electronics & Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210046, China
  • Received:2010-05-01 Revised:2010-07-01 Online:2011-01-20 Published:2011-09-02

有机电致发光器件(OLED)是在电场作用下,以有机材料为活性发光层的器件。由于OLED具有亮度高、响应快、视角宽、工艺简单、可柔性等优点,在现代科学研究及技术应用中备受关注。其商业化应用,诸如平板显示(FPD)和固体照明(SSL)等,正在不断向前推进。本文综述了小分子OLED的各种器件结构和功能材料研究进展以及该领域存在的问题和挑战。在器件结构方面,着重介绍了每种器件的结构及相关工作原理、并对其性能进行讨论。包括:掺杂或主体发光器件;单层、双层、三层及多层器件;白光器件。继而介绍了OLED功能材料的一般研究方法,OLED中典型功能材料的结构和特点,以及器件性能。这些功能材料包括:空穴传输、电子传输、红光、绿光、蓝光、掺杂磷光的主体、界面修饰等材料。文章最后提出了小分子有机电致发光器件在技术方面存在的主要问题和挑战,并对其未来发展方向做了简单讨论。

Organic light-emitting diodes (OLEDs) are electrical driven devices which contain organic materials as emitting media. OLEDs have attracted attention widely in modern science and technology, due to their good features of high brightness, quick response, large viewing angle, simple manufacture process, and flexibility, etc. Currently, OLEDs have stridden forward to commercialization in its application field, such as flat panel display (FPD) and solid state lighting (SSL). Although small-size FPD products based on OLED have been in the markets, and prototype products in large dimensions also have come to true, there still exist challenges and hurdles. In this paper, we review the progress in OLED research of devices and materials, as well as OLED applications. Firstly, devices with different structures, such as host emitter based- and dopant emitter based devices, single-, double-, triple- and multilayer devices, as well as white OLED device are discussed, focusing on their working principles, corresponding device features and mechanism differences among them. Secondly, after introducing the strategies for OLED material research, different types of materials including hole transport materials, electron transport materials, various color emitters, and surface modification materials, are summarized, with their performance in OLED presented. Finally, the current challenges for applications are highlighted, and the focus of future research and development are proposed.

中图分类号: 

()

[1] Pope M, Kallmann H P, Magnante P. J. Chem. Phys., 1963, 38: art. no. 2042
[2] Visco R E, Chandross E A. J. Am. Chem. Soc., 1964, 86: 5350—5351
[3] Williams D F, Schadt M. Proc. IEEE, 1970, 476
[4] Vincett P S, Barlow W A, Hann R A, Roberts G G. Thin Solid Films, 1982, 94: 171—183
[5] Tang C W, VanSlyke S A. Appl. Phys. Lett., 1987, 51: 913—915
[6] Tang C W, VanSlyke S A, Chen C H. J. Appl. Phys., 1989, 65: 3610—3612
[7] Burroughes J H, Bradley D D C, Brown A R, Marks R N, Mackay K, Friend R H, Burns P L, Holmes A B. Nature, 1990, 347: 539—541
[8] Baldo M A, OBrien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Nature, 1998, 395: 151—154
[9] Khan R U A, Günter C H P. J. Mater. Sci. Mater. Electron., 2006, 17: 467—474
[10] Loo Y L, McCulloch I. MRS Bulletin, 2008, 33: 653—662
[11] Sun Y, Giebink N C, Kanno H, Ma B, Thompson M E, Forrest S R. Nature, 2006, 440: 908—912
[12] Shi J, Tang C W. Appl. Phys. Lett., 1997, 70: 1665—1667
[13] Mi B X, Gao Z Q, Lee C S, Kwong H L, Wong N B. Appl. Phys. Lett., 1999, 75: 4055—4057
[14] Burin A L, Ratner M A. J. Phys. Chem. A, 2000, 104: 4704—4710
[15] Naka S, Shinno K, Okada H, Onnagawa H, Miyashita K. Jpn. J. Appl. Phys., 1994, 33: L1772—L1774
[16] Yang H W, Yoon Y B, Kim T W, Kwack K D, Kim J H, Seo J H, Kim Y K. Solid State Commun., 2005, 137: 87—90
[17] Gao Z Q, Lee C S, Bello I, Lee S T, Wu S K, Yan Z L, Zhang X H. Synth. Met., 1999, 105: 141—144
[18] Kido J, Kimura M, Nagai K. Science, 1995, 267: 1332—1334
[19] Hung L S, Tang C W, Mason M G. Appl. Phys. Lett., 1997, 70: 152—154
[20] de Kok M M, Buechel M, Vulto S I E, van de Weijer P, Meulenkamp E A, de Winter S H P M, Mank A J G, Vorstenbosch H J M, Weijtens C H L, van Elsbergen V. Phys. Status Solidi, 2004, 201: 1342—1359
[21] Shirota Y, Kageyama H. Chem. Rev., 2007, 107: 953—1010
[22] Huang J, Pfeiffer M, Werner A, Blochwitz Jan, Leo K, Liu S. Appl. Phys. Lett., 2002, 80: 139—141
[23] Chang C C, Hsieh M T, Chen J F, Hwang S W, Chen C H. Appl. Phys. Lett., 2006, 89: art. no. 253504
[24] Mi B X, Gao Z Q, Cheah K W, Chen C H. Appl. Phys. Lett., 2009, 94: art. no. 073507
[25] DAndrade B W, Holmes R J, Forrest S R. Adv. Mater., 2004, 16: 624—628
[26] Niu Y H, Liu M S, Ka J W, Bardeker J, Zin M T, Schofield R, Chi Y, Jen A K Y. Adv. Mater., 2007, 19: 300—304
[27] Luo J, Li X, Hou Q, Peng J B, Yang W, Cao Y. Adv. Mater., 2007, 19: 1113—1117
[28] Liu J, Shao S Y, Chen L, Xie Z Y, Cheng Y X, Geng Y H, Wang L X, Jing X B, Wang F S. Adv. Mater., 2007, 19: 1859—1863
[29] Wang L, Lin M F, Wong W K, Cheah K W, Tam H L, Gao Z Q, Chen C H. Appl. Phys. Lett., 2007, 91: art. no. 183504
[30] DAndrade B W, Brooks J, Adamovich V, Thompson M E, Forrest S R. Adv. Mater., 2002, 14: 1032—1036
[31] Singh S P, Mohapatra Y N, Qureshi M, Manoharanet S S. Appl. Phys. Lett., 2005, 86: art. no. 113505
[32] Williams E L, Haavisto K, Li J, Jabbour G E. Adv. Mater., 2007, 19: 197—202
[33] Kim Y M, Park Y W, Choi J H, Ju B K, Jung J H, Kim J K. Appl. Phys. Lett., 2007, 90: art. no. 033506
[34] Tong Q X, Lai S L, Chen M Y, Tang J X, Kwong H L, Lee C S, Lee S T. Appl. Phys. Lett., 2007, 91: art. no. 023503
[35] Lei G, Wang L, Qiu Y. Appl. Phys. Lett., 2006, 88: art. no. 103508
[36] Kanno H, Holmes R J, Sun Y, Kena-Cohen S, Forrest S R. Adv. Mater., 2006, 18: 339—342
[37] Krummacher B C, Choong V E, Mathai M K, Choulis S A, So F, Jermann F, Fiedler T, Zachau M. Appl. Phys. Lett., 2006, 88: art. no. 113506
[38] Schwartz G, Pfeiffer M, Reineke S, Walzer K, Leo K. Adv. Mater., 2007, 19: 3672—3676
[39] Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lüssem B, Leo K. Nature, 2009, 459: 234—238
[40] Chew S, Lee C S, Lee S T, Wang P, He J, Li W, Pan J, Zhang X, Kwong H. Appl. Phys. Lett., 2006, 88: art. no. 093510
[41] Wong W Y, Ho C L, Gao Z Q, Mi B X, Chen C H, Cheah K W, Lin Z. Angew. Chem. Int. Ed., 2006, 45: 7800—7803
[42] Gambino S, Stevenson S G, Knights K A, Burn P L, Samuel I D W. Adv. Funct. Mater., 2008, 19: 317—323
[43] Ho C L, Wang Q, Lam C S, Wong W Y, Ma D, Wang L, Gao Z Q, Chen C H, Cheah K W, Lin Z. Chem. Asian J., 2008, 4: 89—103
[44] Lu W, Mi B X, Chan M C W, Hui Z, Che C M, Zhu N, Lee S T. J. Am. Chem. Soc., 2004, 126: 4958—4971
[45] Ikai M, Ishikawa F, Aratani N, Osuka A, Kawabata S, Kajioka T, Takeuchi H, Fujikawa H, Taga Y. Adv. Funct. Mater., 2006, 16: 515—519
[46] Yang C J, Yi C, Xu M, Wang J H, Liu Y Z, Gao X C, Fu J W. Appl. Phys. Lett., 2006, 89: art. no. 233506
[47] He Z, Wong, W Y, Yu X, Kwok H S, Lin Z. Inorg. Chem., 2006, 45: 10922—10937
[48] Yang C L, Zhang X W, You H, Zhu L Y, Chen L Q, Zhu L N, Tao Y T, Ma D G, Shuai Z G, Qin J G. Adv. Funct. Mater., 2007, 17: 651—661
[49] Adamovich V, Brooks J, Tamayo A, Alexander A M, Djurovich P I, D'Andrade B W, Adachi C, Forrest S R, Thompson M E. New J. Chem., 2002, 26: 1171—1178
[50] Mi B X, Wang P F, Liu M W, Kwong H L, Wong N B, Lee C S, Lee S T. Chem. Mater., 2003, 15: 3148—3151
[51] Murata H, Malliarasb G G, Uchida M, Shen Y, Kafafi Z H. Chem. Phys. Lett., 2001, 339: 161—166
[52] Liu T H, Iou C Y, Chen C H. Appl. Phys. Lett., 2003, 83: 5241—5243
[53] Okumoto K, Kanno H, Hamada Y, Takahashi H, Shibata K. Appl. Phys. Lett., 2006, 89: art. no. 013502
[54] Picciolo L C, Murata H, Kafafi Z H. Appl. Phys. Lett., 2001, 78: 2378—2380
[55] Mi B X, Gao Z Q, Liu M W, Chan K Y, Kwong H L, N. Wong B, Lee C S, Hung L S, Lee S T. J. Mater. Chem., 2002, 12: 1307—1310
[56] Adachi C, Baldo M A, Forrest S R, Lamansky S, Thompson M E, Kwong R C. Appl. Phys. Lett., 2001, 78: 1622—1624
[57] Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K. J. Am. Chem. Soc., 2003, 125: 12971—12979
[58] Huang J, Watanabe T, Ueno K, Yang Y. Adv. Mater., 2007, 19: 739—743
[59] Meerheim R, Walzer K, Pfeiffer M, Leo K. Appl. Phys. Lett., 2006, 89: art. no. 061111
[60] Mi B X, Wang P F, Gao Z Q, Lee C S, Lee S T, Hong H L, Chen X M, Wong M S, Xia P F, Cheah K W, Chen C H, Huang W. Adv. Mater., 2008, 21: 339—343
[61] Tang C, Liu F, Xia Y J, Lin J, Xie L H, Zhong G Y, Fan Q L, Huang W. Org. Electron., 2006, 7: 155—162
[62] Gao Z Q, Li Z H, Xia P F, Wong M S, Cheah K W, Chen C H. Adv. Funct. Mater., 2007, 17: 3194—3199
[63] Lai W Y, Zhu R, Fan Q L, Hou L T, Cao Y, Huang W. Macromolecules, 2006, 39: 3707—3709
[64] Adachi C, Kwong R C, Djurovich P, Adamovich V, Baldo M A, Thompson M E, Forrest S R. Appl. Phys. Lett., 2001, 79: 2082—2084
[65] Lin J J, Liao W S, Huang H J, Wu F I, Cheng C H. Adv. Funct. Mater., 2008, 18: 485—491
[66] Yang C H, Cheng Y M, Chi Y, Hsu C J, Fang F C, Wong K T, Chou P T, Chang C H, Tsai M H, Wu C C. Angew. Chem. Int. Ed., 2007, 46: 2418—2421
[67] Yeh S J, Wu M F, Chen C T, Song Y H, Chi Y, Ho M H, Hsu S F, Chen C H. Adv. Mater., 2005, 17: 285—289
[68] Lee S J, Park K M, Yang K, KangY. Inorg. Chem., 2009, 48: 1030—1037
[69] Yook K, Jeon S, Joo C, LeeJ Y. Org. Electron., 2009, 10: 170—173
[70] Chen C H, Tang C W. Appl. Phys. Lett., 2001, 79: 3711—3713
[71] Okumoto K, Kanno H, Hamaa Y, Takahashi H, Shibata K. Appl. Phys. Lett., 2006, 89: art. no. 063504
[72] Ikai M, Tokito S, Sakamoto Y, Suzuki T, Taga Y. Appl. Phys. Lett., 2001, 79: 156—158
[73] Watanabe S, Ide N, Kido J. Jpn. J. Appl. Phys., 2007, 46: art. no. 1186
[74] Tao Y, Wang Q, Yang C, Wang Q, Zhang Z, Zou T, Qin J, Ma D. Angew. Chem. Int. Ed., 2008, 47: 8104—8107
[75] Adachi C, Baldo M A, Thompson M E, Forrest S R. J. Appl. Phys., 2001, 90: art. no. 5048
[76] Gao Z Q, Mi B X, Tam H L, Cheah K W, Chen C H, Wong M S, Lee S T, Lee C S. Adv. Mater., 2008, 20: 774—778
[77] Kawamura Y, Goushi K, Brooks J, Brown J J, Sasabe H, Adachiet C. Appl. Phys. Lett., 2005, 86: art. no. 071104
[78] Wu M F, Yeh S J, Chen C T, Murayama H, Tsuboi T, Li W S, Chao I, Liu S W, Wanget J K. Adv. Funct. Mater., 2007, 17: 1887—1895
[79] Inomata H, Goushi K, Masuko T, Konno T, Imai T, Sasabe H, Brown J J, Adachi C. Chem. Mater., 2004, 16: 1285—1291
[80] Ren X, Jian L, Holmes R J, Djurovich P I, Forrest S R, Thompson M E. Chem. Mater., 2004, 16: 4743—4747
[81] Park T J, Jeon W S, Park J J, Kim S Y, Lee Y K, Jang J, Kwon J H,Pode R. Appl. Phys. Lett., 2008, 92: art. no. 113308
[82] Tsuzuki T, Tokito S. Adv. Mater., 2007, 19: 276—280
[83] Gao Z Q, Luo M, Sun X H, Tam H L, Wong M S, Mi B X, Xia P F, Cheah K W, Chen C H. Adv. Mater., 2008, 21: 688—692
[84] Jeon S O, Yook K S, Joo C W, Lee J Y. Adv. Mater., 2010, 22: 1872—1876
[85] Ma H, Yip H L, Huang F, Jen A K Y. Adv. Funct. Mater., 2001, 20: 1371—1388
[86] 密保秀(Mi B X),陆希郎(Lu X L),高志强(Gao Z Q), 谢国伟(Cheah K W). 南京邮电大学报(Nanjing University of Posts & Telecommunications Report), 2008, 28(1): 48—52
[87] Hung L S, Zheng L R, Mason M G. Appl. Phys. Lett., 2001, 78: 673—676
[88] Van Slyke S A, Chen C H, Tang C W. Appl. Phys. Lett., 1996, 69: 2160—2162
[89] 陈金鑫(Chen C H), 黄孝文(Huang X W). OLED有机电致发光材料与器件(Organic Electrolumi-nescent Materials & Devices). 北京: 清华大学出版社(Beijing: Tsinghua University Press), 2007. 48—49
[90] Kwong R C, Nugent M R, Michalski L,Ngo T, Rajan K, Tung Y J, Weaver M S, Zhou T X, Hack M, Thompson M E, Forrest S R, Brownet J J. Appl. Phys. Lett., 2002, 81: 162—164
[91] Kwong R C, Weaver M S, Michael L M H, Tung Y J, Chwang A B, Zhou T X, Hack M, Brown J J. Org. Electron., 2003, 4: 155—164
[92] Su S J, Gonmori E, Sasabe H, Kido J. Adv. Mater., 2008, 20: 4189—4194

[1] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
[2] 卢芸, 李景鹏, 张燕, 仲国瑞, 刘波, 王慧庆. 木基炭微纳功能骨架[J]. 化学进展, 2020, 32(7): 906-916.
[3] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[4] 左继浩, 陈嘉慧, 文秀芳, 徐守萍, 皮丕辉. 用于分离油水乳液的先进材料[J]. 化学进展, 2019, 31(10): 1440-1458.
[5] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[6] 金亨到, 王立, 俞豪杰, 童荣柏, 周卫东. 主链或侧链含二茂铁的聚合物的合成和应用[J]. 化学进展, 2016, 28(1): 51-57.
[7] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[8] 张晓敏, 张力, 贺雪英, 吴俊涛. 冷冻干燥法制备聚合物基新型材料及其应用[J]. 化学进展, 2014, 26(11): 1832-1839.
[9] 曹锦珠, 王志祥, 陈润锋, 李欢欢, 郑超, 黄维. 1,8-位修饰杂芴类有机光电功能材料的合成与应用[J]. 化学进展, 2013, 25(08): 1350-1361.
[10] 李昂, 张春玲*, 孙国恩, 牟建新*. POMSS配位化合物[J]. 化学进展, 2012, 24(07): 1309-1323.
[11] 高玉荣, 马廷丽. 体异质结型聚合物太阳电池[J]. 化学进展, 2011, 23(5): 991-1013.
[12] 马桂林, 许佳, 张明, 王小稳, 尹金玲, 徐建红. 无机质子导体的研究进展[J]. 化学进展, 2011, 23(0203): 441-448.
[13] 刘政, 孙丽宁, 施利毅, 张登松. 近红外稀土荧光在功能材料领域的研究进展[J]. 化学进展, 2011, 23(01): 153-164.
[14] 王红飞 张黎明. 多糖基分子印迹功能材料*[J]. 化学进展, 2010, 22(11): 2165-2172.
[15] 朱敦如,齐丽,程慧敏,沈旋,卢伟. Fe(II)自旋交叉分子材料* [J]. 化学进展, 2009, 21(6): 1187-1198.