English
新闻公告
More
化学进展 2011, Vol. 23 Issue (01): 1-12   后一篇

• Mini Accounts •

氢键介质的芳酰胺折叠体:从构象控制到功能演化

黎占亭1,2   

  1. 1. 复旦大学化学系 上海 200433,China;
    2. 中国科学院上海有机化学研究所 上海 200032,China
  • 出版日期:2011-01-20 发布日期:2011-09-02
  • 作者简介:Zhan-Ting Li was born in 1966 in Shangcai, Henan Province. He received his BSc degree in 1985 from Zhengzhou University and his Ph.D. degree in fluorine chemistry in 1992 with Professor Qing- Yun Chen at Shanghai Institute of Organic Chemistry (SIOC). He did a postdoctoral research with Professor Jan Becher at the University of South Denmark (formerly Odense University) (1994–1995) and was a visiting scholar with Professor Steven C. Zimmerman at The University of Illinois at Urbana- Champaign (2000–2001). He was promoted to full professor at SIOC in 2003 and joined the Chemistry De partmentfaculty, Fudan University in 2010. His researches are mainly concerned with the hydrogen bonding-related bimimetic structures, molecular recognition and self-assembly, conjugated structures and fluorine–containing materials.

Hydrogen bonded arylamide foldamers: From conformational control to functional evolution

Li Zhan ting1,2   

  1. 1. Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China;
    2. Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
  • Online:2011-01-20 Published:2011-09-02

根据芳环上酰胺和氢键受体位置的不同,氢键介质的芳酰胺和酰肼折叠体可以产生折叠、螺旋、“ 之” 字型、直线型及其它扩展型的构象。由于氢键具有较高的稳定性及芳酰胺固有的平面性特征,这一系列的芳酰胺寡聚体拥有较高的可预测的构象。芳酰胺骨架本身可以通过简单的酰胺键偶合反应构筑,而不同的官能团也可以选择性地引入到特定的骨架内部或其侧链内。因此,在过去几年内,我们重点研究了它们在构筑新的分子镊,形成凝胶、囊泡和液晶等有序功能超分子体系及促进大环分子体系合成方面的应用。近期我们又发现,氢键驱动的折叠片段能够并入到聚合物中,通过分子内氢键的断裂和恢复可逆调控聚合物的力学性质。本文主要介绍我们实验室在氢键驱动的芳酰胺折叠体结构– 性质关系研究方面取得的进展。

Hydrogen bonded aryl amide and hydrazide foldamers may adopt folded or helical, zigzag, straight or other extended conformations, depending on the positions of the amides and hydrogen bonding acceptors on the aromatic rings. Because of the relatively high strength of hydrogen bonding and the intrinsic planarity of the arylamide units, this family of amide oligomers usually possesses highly predictable conformations. The frameworks themselves can be conveniently constructed via simple amide coupling reactions, while discrete functional groups can be introduced to the frameworks or appended side chains at required positions. Thus, in the past few years, we have focused on their applications in designing new molecular tweezers, for generating welldefined and functional supramolecular systems, including organogels, vesicles and liquid crystals, and for directing the formation of complicated macrocyclic systems. More recently, we have found that hydrogen bonding-driven folded segments can also be incorporated into polymers to reversibly tune their mechanical property through the breaking and recovering of the intramolecular hydrogen bonds. This Mini Account summarizes our recent efforts along this line.

()


[1] Hecht S, Huc I (eds). Foldamers: Structure, Properties and Applications, Weinheim: Wiley-VCH, 2007


[2] Gong B. Chem. Eur. J., 2001, 7: 4337—4342


[3] Huc I. Eur. J. Org. Chem., 2004, 17—29


[4] Gong B. Acc. Chem. Res., 2008, 41: 1376—1386


[5] Saraogi I, Hamilton A D. Chem. Soc. Rev., 2009, 38: 1726—1743


[6] Li Z T, Hou J L, Li C, Yi H P. Chem. Asian J., 2006, 1: 766—778


[7] Li Z T, Hou J L, Li C. Acc. Chem. Res., 2008, 41: 1343—1353


[8] Zhao X, Li Z T. Chem. Commun., 2010, 46: 1601—1616


[9] Hu Z Q, Hu H Y, Chen C F. J. Org. Chem., 2006, 71: 1131—1138


[10] Yin H, Hamilton A D. Angew. Chem. Int. Ed., 2005, 44: 4130—4163


[11] Tew G N, Scott R W, Klein M L, DeGrado W F. Acc. Chem. Res., 2010, 43: 30—39


[12] Hou J L, Shao X B, Chen G J, Zhou Y X, Jiang X K, Li Z T. J. Am. Chem. Soc., 2004, 126: 12386—12394


[13] Howard H A K, Hoy V J, O’Hagan D, Smith G T. Tetrahedron, 1996, 52: 12613—12622


[14] Dunitz J D. ChemBioChem, 2004, 5: 614—621


[15] Li C, Ren S F, Hou J L, Yi H P, Zhu S Z, Jiang X K, Li Z T. Angew. Chem. Int. Ed., 2005, 44: 5725—5729


[16] Zhu Y Y, Wu J, Li C, Zhu J, Hou J L, Li C Z, Jiang X K,Li Z T. Cryst. Growth Des., 2007, 7: 1490—1496


[17] Zhu Y Y, Yi H P, Li C, Jiang X K, Li Z T. Cryst. Growth Des., 2008, 8: 1294—1300


[18] Gan Q, Li F, Li G, Kauffmann B, Xiang J, Huc I, Jiang H. Chem. Commun., 2010, 46: 297—299


[19] Zhu Y Y, Jiang L, Li Z T. CrystEngComm, 2009, 11: 235—238


[20] V?gtle F, Weber E. Angew. Chem. Int. Ed. Engl., 1979, 18: 753—776


[21] Hill D J, Mio M J, Prince R B, Hughes T S, Moore J S. Chem. Rev., 2001, 101: 3893—4011


[22] Hou J L, Shao X B, Chen G J, Zhou Y X, Jiang X K, Li Z T. J. Am. Chem. Soc., 2004, 126: 12386—12394


[23] Zhao X, Wang X Z, Jiang X K, Chen Y Q, Li Z T, Chen G J. J. Am. Chem. Soc., 2003, 125: 15128—15139


[24] Li C, Wang G T, Yi H P, Jiang X K, Li Z T, Wang R X. Org. Lett., 2007, 9: 1797—1800


[25] Yi H P, Shao X B, Hou J L, Li C, Jiang X K, Li Z T. New J. Chem., 2005, 29: 1213—1218


[26] Yamato K, Yuan L, Feng W, Helsel A J, Sanford A R, Zhu J, Deng J, Zeng X C, Gong B. Org. Biomol. Chem., 2009, 7: 3643—3647


[27] Yi H P, Li C, Hou J L, Jiang X K, Li Z T. Tetrahedron, 2005, 61: 7974—7980


[28] Du P, Xu Y X, Jiang X K, Li Z T. Sci. China Ser. B, 2009, 52: 489—496


[29] Wu Z Q, Shao X B, Li C, Hou J L, Wang K, Jiang X K, Li Z T. J. Am. Chem. Soc., 2005, 127: 17460—17468


[30] Liu H, Wu J, Jiang X K, Li Z T. Tetrahedron Lett., 2007, 48: 7327—7331


[31] Feng D J, Wang G T, Wu J, Wang R X, Li Z T. Tetrahedron Lett., 2007, 48: 6181—6185


[32] Wu Z Q, Li C Z, Feng D J, Jiang X K, Li Z T. Tetrahedron, 2006, 62: 11054—11062


[33] Li C Z, Zhu J, Wu Z Q, Hou J L, Li C, Shao X B, Jiang X K, Li Z T, Gao X, Wang Q R. Tetrahedron, 2006, 62: 6973—6980


[34] Li C Z, Li Z T, Gao X, Wang Q R. Chin. J. Chem., 2007, 25: 1417—1422


[35] Wu J, Hou J L, Li C, Wu Z Q, Jiang X K, Li Z T, Yu Y H. J. Org. Chem., 2007, 72: 2897—2905


[36] Hou J L, Yi H P, Shao X B, Li C, Wu Z Q, Jiang X K, Wu L Z, Tung C H, Li Z T. Angew. Chem. Int. Ed., 2006, 45: 796—800


[37] Yi H P, Wu J, Ding K L, Jiang X K, Li Z T. J. Org. Chem., 2007, 72: 870—877


[38] Xu Y X, Zhao X, Jiang X K, Li Z T. J. Org. Chem., 2009, 74: 7267—7273


[39] Xu Y X, Wang G T, Zhao X, Jiang X K, Li Z T.Langmuir, 2009, 25: 2684—2688

[40] Huc I, Maurizot V, Gornitzka H, Léger J M. Chem. Commun., 2002, 578—579


[41] Gan Q, Bao C, Kauffmann B, Grélard A, Xiang J, Liu S, Huc I, Jiang H. Angew. Chem. Int. Ed., 2008, 47: 1715— 1718.


[42] Zhu J, Wang X Z, Shao X B, Hou J L, Chen X Z, Jiang X K, Li Z T. J. Org. Chem., 2004, 69: 6221 —6227

[43] Zhu J, Lin J B, Xu Y X, Jiang X K, Li Z T. Tetrahedron, 2006, 62: 11933—11941


[44] Zhu J, Lin J B, Xu Y X, Shao X B, Jiang X K, Li Z T. J. Am. Chem. Soc., 2006, 128: 12307—12313


[45] Wolffs M, Delsuc N, Veldman D, Anh N V, Williams R M, Meskers S C J, Janssen P A J, Huc I, Schenning A P H J. J. Am. Chem. Soc., 2009, 131: 4819—4829


[46] Wang K, Wu Y S, Wang G T, Wang R X, Jiang X K, Fu H B, Li Z T. Tetrahedron, 2009, 65: 7718—7729


[47] Li C, Zhu Y Y, Yi H P, Li C Z, Jiang X K, Li Z T. Chem. Eur. J., 2007, 13: 9990—9998


[48] Wang L, Xiao Z Y, Hou J L, Wang G T, Jiang X K, Li Z T. Tetrahedron, 2009, 65: 10544—10551


[49] Cai W, Wang G T, Xu Y X, Jiang X K, Li Z T. J. Am. Chem. Soc., 2008, 130: 6936—6937


[50] You L Y, Jiang X K, Li Z T. Tetrahedron, 2009, 65: 9494—9504.


[51] Lu B Y, Lin J B, Jiang X K, Li Z T. Tetrahedron Lett., 2010, 51: 3830—3835


[52] You L Y, Li Z T. Chin. J. Chem., revised


[53] Kunieda H, Nakamura K, Evans D F. J. Am. Chem. Soc., 1991, 113: 1051—1052


[54] Xu X N, Wang L, Li Z T. Chem. Commun., 2009, 6634—6636


[55] Cai W, Wang G T, Du P, Wang R X, Jiang X K, Li Z T. J. Am. Chem. Soc., 2008, 130: 13450—13459


[56] Green M M, Cheon K S, Yang S Y, Park J W, Swansburg S, Liu W. Acc. Chem. Res., 2001, 34: 672—680


[57] Xiao Z Y, Hou J L, Jiang X K, Li Z T, Ma Z. Tetrahedron, 2009, 65: 10182—10191


[58] Chen Y Q, Wang X Z, Shao X B, Hou J L, Chen X Z, Jiang X K, Li Z T. Tetrahedron, 2004, 60: 10253—10260


[59] Wu Z Q, Jiang X K, Li Z T. Tetrahedron Lett., 2005, 46: 8067—8070


[60] Wu Z Q, Jiang X K, Zhu S Z, Li Z T. Org. Lett., 2004, 6: 229—232


[61] Yuan L H, Feng W, Yamato K, Sanford A R, Xu D G, Guo H, GongB. J. Am. Chem. Soc., 2004, 126: 11120— 11121


[62] Jiang H, Léger J M, Guionneau P, Huc I. Org. Lett., 2004, 6: 2985—2988

[63] Li F, Gan Q, Xue L, Wang Z M, Jiang H. Tetrahedron Lett., 2009, 50: 2367—2370


[64] Qin B, Chen X, Fang X, Shu Y, Yip Y K, Yan Y, Pan S, Ong W Q, Ren C, Su H, Zeng H. Org. Lett., 2008, 10: 5127—5130


[65] Yang L, Zhong L, Yamato K, Zhang X, Feng W, Deng P, Yuan L, Zeng X C, Gong B. New J. Chem., 2009, 33: 729—733


[66] Zhu Y Y, Li C, Li G Y, Jiang X K, Li Z T. J. Org. Chem., 2008, 73: 1745—1751


[67] Zhu Y Y, Wang G T, Li Z T. Org. Biomol. Chem., 2009, 7: 3243—3250


[68] Corbett P T, Leclaire J, Vial L, West K R, Wietor J L, Sanders J K M, Otto S. Chem. Rev., 2006, 106: 3652— 3711


[69] Lin J B, Xu X N, Jiang X K, Li Z T. J. Org. Chem., 2008, 73: 9403—9410


[70] Lin J B, Wu J, Jiang X K, Li Z T. Chin. J. Chem., 2009, 27: 117—122

[71] Xu X N, Wang L, Lin J B, Wang G T, Jiang X K, Li Z T. Chem. Eur. J., 2009, 15: 5763—5774


[72] Zhou C, Cai W, Wang G T, Zhao X, Li Z T. Macromol. Chem. Phys., accepted


[73] Yamazaki N, Matsumoto M, Higashi F. J. Polym. Sci. Polym. Chem., 1975, 13: 1373—1380


[74] Kushner A M, Gabuchian V, Johnson E G, Guan Z. J. Am. Chem. Soc., 2007, 129: 14110—14111


[75] Shi Z M, Huang J, Ma Z, Zhao X, Guan Z, Li Z T. Macromolecules, DOI: 10.1021/ma100952h.

[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 赵平平, 杨军星, 施健辉, 朱静怡. 基于树状大分子的SPECT成像造影剂的构建及其应用[J]. 化学进展, 2021, 33(3): 394-405.
[3] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[4] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[5] 蒋乔, 徐雪卉, 丁宝全. 纳米材料对生物凝聚态的调控[J]. 化学进展, 2020, 32(8): 1128-1139.
[6] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[7] 张丹维, 王辉, 黎占亭. 芳香大分子和超分子螺旋管构筑及其功能[J]. 化学进展, 2020, 32(11): 1665-1679.
[8] 王慧娟, 刘育. 磺化冠醚的分子键合与组装[J]. 化学进展, 2020, 32(11): 1651-1664.
[9] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[10] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[11] 姚闯, 张希, 黄勇力, 李蕾, 马增胜, 孙长庆. 水的结构和反常物性[J]. 化学进展, 2018, 30(8): 1242-1256.
[12] 许颖, 高婷婷, 王启晓, 屈阳, 刘宏飞, 辛渊蓉. 高分子类型MONOLITH材料的制备技术及其作为亲和色谱固定相用于分离生物大分子的应用[J]. 化学进展, 2018, 30(8): 1112-1120.
[13] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[14] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[15] 那向明, 周炜清, 李娟, 苏志国, 马光辉. 高分子多孔微球产品的制备及其在类病毒颗粒分离纯化中的应用[J]. 化学进展, 2018, 30(1): 5-13.