English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2462-2468 前一篇   

• 综述与评论 •

低温微波技术在化学研究中的应用

童星, 肖小华, 邓建朝, 王家玥, 李攻科   

  1. 中山大学化学与化学工程学院 广州 510275
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:cesgkl@mail.sysu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No 20905080, 20375050)、“十一五”国家科技支撑计划重点项目(No.2006BAK03A08)和广东省科技计划项目(No. 2009B010900021)资助

Applications of Low Temperature Microwave Technique in Chemistry Research

Tong Xing, Xiao Xiaohua, Deng Jianchao, Wang Jiayue, Li Gongke   

  1. School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, China
  • Online:2010-12-24 Published:2010-11-04

低温微波技术可用于降低微波反应时体系的温度,减少或消除微波辐射时速热效应带来的副反应,具有快速高效、反应均匀、安全环保等优势,在化学研究中得到了广泛关注和应用。本文介绍了低温微波技术的实现方法,综述了近年来该技术在蛋白质研究、合成反应、天然产物研究和微波化学机理研究等领域中的应用,并展望了低温微波技术的发展方向。

Low temperature microwave technique develops normal microwave heating technique and expanded its application range. The technology can reduce or eliminate the side reaction caused by sever thermal effects. There are several approaches used to achieve low temperature, such as adjusting the microwave radiation source, cooling medium, change of the reactants physical property and controlling the initial temperature of reactants. Low temperature microwave technique is applied widely for its high speed, security, reaction uniformity in chemistry research. By this new technique, some proteins can exposure under microwave radiation without protein denaturation; some catalytic synthesis can achieve higher yield and higher reaction rate than that in normal microwave reaction and some natural products can be extracted under protection from decomposition and oxidization. In addition, this technique can also be used as a tool to research microwave chemical mechanism. In this paper, the low temperature microwave technique is introduced and its application in protein research, catalytic synthesis, natural products research and microwave chemical mechanism research are reviewed. The future development of low temperature microwave technique is prospected.

Contents
1 Introduction
2 Application of LTMT in protein research
2.1 Application of LTMT in protein enzymatic hydrolysis
2.2 Application of LTMT in immunoassay
2.3 Application of LTMT in enzyme linked immunosorbent assay
2.4 Application of LTMT in protein conformation research
3 Application of LTMT in catalytic synthesis
4 Application of LTMT in of natural products research
5 Application of LTMT in microwave chemical mechanism research
6 Prospect of LTMT

中图分类号: 

()


[1] Adam D. Nature, 2003, 421: 571—572

[2] 金钦汉(Jin Q H). 微波化学(Microwave Chemistry). 北京: 科学出版社(Beijing: Scientific Press), 1999. 1—5

[3] Smith A G, Johnson C B, Ellis E A, Vitha S, Holzenburg A. Anal. Biochem., 2008, 375(2): 313—317

[4] 徐霞(Xu X), 马海乐(Ma H L). 食品科技(Food Science and Technology), 2004, 2: 18—19

[5] Sanders M A. Microsc. Microanal. Proc., 2002, 8(2): 158—159

[6] 张宏峰(Zhang H F). 中山大学硕士论文(Master Dissertation of Sun Yat-sen University), 2007

[7] Bose A K, Ganguly S N, Manhas M S, Manhas M S, He W, Speck J. Tetrahedron Lett., 2006, 47: 3213—3215

[8] 黄校亮(Huang Q L), 刘岩(Liu Y), 金丽(Jin L), 杨莹丽(Yang Y L), 于东冬(Yu D D), 周建光(Zhou J G), 金钦汉(Jin Q H). 辽宁石油化工大学学报(Journal of Liaoning University of Petroleum & Chemical Technology), 2006, 26(4): 53—55

[9] 刘静(Liu J), 陈均志(Chen J Z), 张海平(Zhang H P),董文宾(Dong W B). 化学研究与应用(Chemical Research and Application), 2007, 19(7): 752—755

[10] 窦文超(Dou W C), 郇延富(Huan Y F), 张志权(Zhang Z Q), 张华荣(Zhang H R), 王超(Wang C), 李明(Li M), 冯国栋(Feng G D), 金钦汉(Jin Q H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2007, 28(2): 238—241

[11] Izquierdo F J, Penas E, Baeza M L, Gomez R. Int. Dairy J., 2008, 18(9): 918—922

[12] Sandoval W N, Arellano F, Arnott D, Raab H, Vandlen R, Lill J R. Int. J. Mass. Spectrom., 2007, 259: 117—123

[13] Izquierdo F J, Alli I, Yaylayan V. Int. Dairy J., 2007, 17: 465—470

[14] Zhu S D, Wu Y X, Yu Z N, Zhang X, Li H, Gao M. Bioresource Technol., 2006, 97: 1964—1968

[15] Lin S S, Wu C H, Sun M C, Sun C M, Ho Y P. J. Am. Soc. Mass. Spectr., 2005, 16: 581—588

[16] Juan H F, Chang S C, Huang H C. Proteomics, 2005, 5: 840—842

[17] Vesper H W, Luchuan M. Rapid Commun. Mass. Sp., 2005, 19: 2865—2870

[18] Kumada T, Tsuneyama K, Hatta H, Ishizawa S, Takano Y. Modern Pathol., 2004, 17(9): 1141—1149

[19] Hattaa H, Tsuneyamaa K, Kumadaa T. Pathol. Res. Pract., 2006, 202: 439—445

[20] Victor E, Chavez A, Nanci A. J. Histochem. Cytochem., 2001, 49(9): 1099—1109

[21] Leong A S Y, James M. J. Pathol., 1986, 148: 183—187

[22] Emerson L L, Tripp S R, Baird B C, Layfield L J, Rohr L R. Am. J. Clin. Pathol., 2006, 125(2): 176—183

[23] Aslan K, Holley P, Geddes C D. J. Immunol. Methods, 2006, 312: 137—147

[24] Kumada T, Tsuneyama K, Hatta H. Modern Pathol., 2004, 17(9): 1141—1149

[25] 熊正文(Xiong Z W), 孙印臣(Sun Y C), 张绪斌(Zhang X B), 安赵栓(An Z S). 中国实验动物学杂志(Chinese Journal of Laboratory Animal Science), 2002, 12(6): 356—358

[26] Temel S G, Minbay F Z, Kahveci Z, Jennes L. J. Neurosci. Meth., 2006, 156: 154—160

[27] Munoz T E, Giberson R T, Demaree R, Day J R. J. Neurosci. Meth., 2004, 137: 133—139

[28] 李铁柱(Li T Z), 孙永海(Sun Y H), 郗伟东(Xi W D). 高等学校化学学报(Chemical Journal of Chinese Universities), 2008, 29(3): 473—176

[29] 苏正明(Su Z M), 胡敏(Hu M), 何汇(He H). 中国血吸虫病防治杂志(Chin. J. Schisto. Contral.), 2004, 16(3): 178—181

[30] 刘在安(Liu Z A). 医疗装备(Medical Equipment), 2003, 6(10): 13

[31] Daniells C, Duce I, Thomas D, Sewell P, Tattersall J. Mutat. Res., 1998, 399: 55—64

[32] Pomerai D I, Smith B, Dawe A, North K, Smith T, Archer D B, Duce I R, Jones D, Candido E P M. FEBS Lett., 2003, 543: 93—97

[33] Bohr H, Bohr J. Phys. Rev. E, 2000, 61(4): 4310—4314

[34] 蔡汉成(Cai H C), 方云(Fang Y). 有机化学(Chinese Journal of Organic Chemistry), 2003, 23(1): 298—304

[35] Yadav G D, Lathi P S. Enzyme Microb. Tech., 2006, 38(6): 814—820

[36] 陈建波(Chen J B), 冯佳为(Feng J W). 生物学杂志(Journal of Biology), 2007, 24(1): 32—34

[37] Maugard T, Gaunt D, Legoy M D, Besson T. Biotechnol. Lett., 2003, 25(8): 623—629

[38] Chen J J, Deshpande S V. Tetrahedron Lett., 2003, 44: 8873—8876

[39] Zhang X W, Li G T, Wang Y H. Dyes Pigments, 2007, 74: 536—544

[40] Donard O F X, Lalere B, Martin F, Lobinski R. Anal. Chem., 1995, 67(23): 4250—4254

[41] Gfrerer M, Lankmayr E J. J. Chromatogr. A, 2005, 1072(1): 117—125

[42] 陈宁(Chen N), 马勇(Ma Y), 蒋丽琴(Jiang L Q). 食品工程(Food Engineering), 2008, 4: 17—19

[43] 李攻科(Li G K), 汪军霞(Wang J X), 肖小华(Xiao X H), 周小南(Zhou X N), 张宏峰(Zhang H H). 中国(China), CN1824364, 2006

[44] Wang J X, Xiao X H, Li G K. J. Chromatogr. A, 2008, 1198—1199(11): 45—53

[45] Xiao X H, Wang J X, Wang G. J. Chromatogr. A, 2009, 1216: 8867—8873

[46] 霍茵(Huo Y). 中山大学硕士论文(Master Dissertation of Sun Yat—sen University), 2007

[47] Senise J T, Jermolovicius L A. International Microwave and Optoelectron Confer Proceedings, IEEE, 2001: 185—187

[48] 黄卡玛(Huang K M), 杨晓庆(Yang X Q). 自然科学进展(Progress in Natural Science), 2006, 16(3): 273—279

[49] Huang K M, Yang X Q. Ampere 10th Conference, 2005, 374—378

[50] Fang Y, Huang W, Xia Y M. Process Biochem., 2008, 43(3): 306—310

[51] Horikoshi S, Kajitani M, Serpone N. J. Photoch. Photobio. A, 2007, 188: 1—4

[52] Horikoshi S, Tokunaga A, Hidaka H, Serpone N. J. Photoch. Photobio. A, 2004, 162: 33—40

[53] George D F, Bilek M M, Mckenzie D R. Bioelectromagnetics, 2008, 29: 324—330

[54] Young D D, Nichols J, Kelly R M, Deiters A. J. Am. Chem. Soc., 2008, 130(31): 10048—10049

[55] Shazman A, Mizrahi S, Cogan U. Food Chem., 2007, 103: 444—453

[1] 王妍妍, 陈丽敏, 李思扬, 来鲁华. 无序蛋白质在生物分子凝聚相形成与调控中的作用[J]. 化学进展, 2022, 34(7): 1610-1618.
[2] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[3] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[4] 吴晓晓, 马开庆. 百部生物碱的全合成[J]. 化学进展, 2020, 32(6): 752-760.
[5] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
[6] 宁鹏, 程云辉, 许宙, 丁利, 陈茂龙. 金属-有机框架材料在活性肽富集中的应用[J]. 化学进展, 2020, 32(4): 497-504.
[7] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[8] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[9] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[10] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.
[11] 刘小宇, 肖涛, 秦勇. 灯台生物碱Strictamine的全合成[J]. 化学进展, 2018, 30(5): 578-585.
[12] 黄婷婷, 周子画, 刘琦, 王晓政, 郭文丽, 林双君*. 放线菌来源生物碱的生物合成机制[J]. 化学进展, 2018, 30(5): 692-702.
[13] 徐国华, 李从刚, 刘买利. 类细胞环境下蛋白质结构与功能的NMR研究[J]. 化学进展, 2017, 29(1): 75-82.
[14] 王荣民, 孙康祺, 王建凤, 何玉凤, 宋鹏飞, 熊玉兵. 天然高分子复合羟基磷灰石材料的制备与应用[J]. 化学进展, 2016, 28(6): 885-895.
[15] 田亮, 姚琛, 王怡红*. 电化学生物传感应用于体外检测的研究[J]. 化学进展, 2016, 28(12): 1824-1833.