English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2450-2461 前一篇   后一篇

• 综述与评论 •

生物制造2,3-丁二醇:回顾与展望

纪晓俊, 聂志奎, 黎志勇, 高振, 黄和   

  1. 南京工业大学生物与制药工程学院材料化学工程国家重点实验室 南京 210009
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:biotech@njut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 20606018)、国家高技术研究发展计划(863)项目(No. 2006AA02Z244)和国家重点基础研究发展计划(973)项目(No. 2007CB707805)资助

Biotechnological Production of 2,3-Butanediol

Ji Xiaojun, Nie Zhikui, Li Zhiyong, Gao Zhen, Huang He   

  1. State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing 210009, China
  • Online:2010-12-24 Published:2010-11-04

2,3-丁二醇是生物制造产品体系中一种重要的精细化工原料和潜在平台化合物,广泛应用于材料、医药、食品及航空航天等领域。利用生物质可再生资源为原料生产2,3-丁二醇符合当前发展低碳经济的国家需求。本文回顾了生物制造2,3-丁二醇的研究历史,分析了微生物合成2,3-丁二醇的代谢机理,总结了提高生物制造2,3-丁二醇经济性的有效途径,包括廉价原料的替代、菌株选育与遗传改造和发酵过程控制等,并对2,3-丁二醇的各种下游分离过程进行了对比分析;指出今后研究重点应着眼于努力提高生物质的利用效率,同时实现高效的2,3-丁二醇生物转化两方面,并在此基础上开发2,3-丁二醇的系列高值衍生物,以进一步拓展其应用领域。

2,3-Butanediol, which is considered as an important fine and potential platform chemical, has been widely used in many fields such as materials, medicine, foods, aeronautics, astronautics and so on. Biotechnological production of 2,3-butanediol has a long history over 100 years. Recently, microbial 2,3-butanediol production has attracted great attention as this means which depends on renewable bioresources is a promising route for developing low carbon economy and a gateway to a more sustainable future. In this review, the history of 2,3-butanediol fermentation is revisited and the metabolic mechanism of microbial 2,3-butanediol accumulation and the related key genes and enzymes are firstly introduced. Some strategies for efficient and economical 2,3-butanediol production, including using alternative cost-effective substrates to reduce the raw materials cost, strain improvement for enhancing the 2,3-butanediol yield and process development for improving the bioprocessing ecnomics, are then summarized. At last, various downstream separation methods for economical 2,3-butanediol recovering process are compared. It is pointed out that the focus of future research should be placed on improving biomass utilizing efficiency and enhancing 2,3-butanediol titer, also series of value-added 2,3-butanediol derivatives could be exploited to further expand its applications.

Contents
1 Introduction
2 Current status of 2,3-butanediol production and its application
3 Microbial 2,3-butanediol production and its physiological function
3.1 Microorganisms producing 2,3-butanediol
3.2 Metabolic pathway, key genes and enzymes involved in 2,3-butanediol biosynthesis
3.3 Physiological function of 2,3-butanediol in microbial metabolism
4 Strategies for efficient and economical 2,3-butanediol production
4.1 Alternative fermentation substrates
4.2 Strain improvement and genetic engineering
4.3 Process development
5 Downstream processing of 2,3-butanediol
6 Conclusion and prospects

中图分类号: 

()


[1] Ragauskas A J, Williams C K, Davison B H, Britovsek G, Cairney J, Eckert C A, Frederick Jr W J, Hallett J P, Leak D J, Liotta C L, Mielenz J R, Murphy R, Templer R, Tschaplinski T. Science, 2006, 311: 484—498

[2] 纪晓俊 (Ji X J), 朱建国 (Zhu J G), 高振 (Gao Z), 任路静 (Ren L J), 黄和 (Huang H). 现代化工 (Mordern Chemical Industry), 2006, 26(8): 23—27

[3] Syu M J. Appl. Microbiol. Biotechnol., 2001, 55: 10—18

[4] Garg S, Jain A. Bioresour. Technol., 1995, 51: 103—109

[5] van Haveren J, Scott E L, Sanders J. Biofuels, Bioprod. Bioref., 2007, 2: 41—57

[6] Magee R J, Kosaric N. Adv. Appl. Microbiol., 1987, 32: 89—161

[7] Xiu Z L, Zeng A P. Appl. Microbiol. Biotechnol., 2008, 78: 917—926

[8] 纪晓俊 (Ji X J), 黄和 (Huang H), 杜军 (Du J), 任潇 (Ren X), 李霜 (Li S). 现代化工 (Mordern Chemical Industry), 2008, 28(4): 18—22

[9] 练敏 (Lian M), 纪晓俊 (Ji X J), 黄和 (Huang H), 任潇 (Ren X), 胡南 (Hu N), 李霜 (Li S). 现代化工 (Mordern Chemical Industry), 2008, 28(8): 29—34

[10] Celińska E, Grajek W. Biotechnol. Adv., 2009, 27: 715—725

[11] 戴建英 (Dai J Y), 孙亚琴 (Sun Y Q), 孙丽慧 (Sun L H), 李丹 (Li D), 董悦生 (Dong Y S), 修志龙 (Xiu Z L). 过程工程学报 (The Chinese Journal of Process Engineering), 2010, 10(1): 200—208

[12] 王迪 (Wang D), 王凡强 (Wang F Q), 王建华 (Wang J H). 精细与专用化学品 (Fine and Specialty Chemicals), 2000, 8(7): 20—21

[13] Rubin L J, Lardy H A, Fischer H O L. J. Am. Chem. Soc., 1952, 74: 425—428

[14] Xu Z W. A WO2006092085, 2006

[15] 葛岚 (Ge L), 邵晓丛 (Shao X C), 吴晓敏 (Wu X M), 陈建文 (Chen J W), 吴嘉麟 (Wu J L). 科技创新导报 (Science and Technology Innovation Herald), 2009, 33: 106—106.

[16] Harden A, Walpole G S. P. Roy. Soc. Lond. B Bio., 1906, 77: 399—405

[17] Long S K, Patrick R. Adv. Appl. Microbiol., 1963, 5: 135—155

[18] Fulmer E I, Christensen L M, Kendali A R. J. Ind. Eng. Chem., 1933, 25: 798—800

[19] De Mas C D, Jansen N B, Tsao G T. Biotechnol. Bioeng., 1988, 31: 366—377

[20] Ui S, Masuda T, Masuda H, Muraki H. J. Ferment. Technol., 1986, 64: 481—486

[21] Juni E, Heym G A. J. Bacteriol., 1956, 71: 425—432

[22] Ui S, Hosaka T, Mizutani K, Ohtsuki T, Mimura A. J. Biosci. Bioeng., 2002, 93: 248—251

[23] Strmer F C. J. Biol. Chem., 1967, 242: 1756—1759

[24] Strmer F C. J. Biol. Chem., 1968, 243: 3735—3739

[25] Strmer F C. FEBS Lett., 1968, 2: 36—38

[26] Blomqvist K, Nikkola M, Lehtovaara P, Suihko M L, Airaksinen U, Straby K B, Knowles J K, Penttila M E. J. Bacteriol., 1993, 175: 1392—1404

[27] Mayer D, Schlensog V, Bock A. J. Bacteriol., 1995, 177: 5261—5269

[28] Johansen L, Bryn K, Strmer F C. J. Bacteriol., 1975, 123: 1124—1130

[29] Olson B H, Johnson M J. J. Bacteriol., 1948, 55: 209—222

[30] Yu E K C, Saddler J N. Appl. Environ. Microbiol., 1983, 46: 630—635

[31] Zeng A P, Biebl H, Deckwer W D. Appl. Microbiol. Biotechnol., 1991, 34: 463—468

[32] Ma C Q, Wang A L, Qin J Y, Li L X, Ai X L, Jiang T Y, Tang H Z, Xu P. Appl. Microbiol. Biotechnol., 2009, 82: 49—57

[33] 金强 (Jin Q), 张红漫 (Zhang H M), 严立石 (Yan L S), 黄和 (Huang H). 化学进展 (Progress in Chemistry), 2010, 22(4): 654—662

[34] Yan L S, Zhang H M, Chen J W, Lin Z X, Jin Q, Jia H H, Huang H. Bioresour. Technol., 2009, 100: 1803—1808

[35] Yu E K C, Levitin N, Saddler J N. Biotechnol. Lett., 1982, 4: 741—746

[36] Yu E K C, Deschatelets L, Saddler J N. Appl. Microbiol. Biotechnol., 1984, 19: 365—372

[37] Cheng K K, Liu Q, Zhang J A, Li J P, Xu J M, Wang G H. Process Biochem., 2010, 45: 613—616

[38] Yu E K C, Chan M K H, Saddler J N. Appl. Microbiol. Biotechnol., 1985, 22: 399—404

[39] Cao N, Xia Y, Gong C S, Tsao G T. Appl. Biochem. Biotechnol., 1997, 63—65: 129—139

[40] 杜军 (Du J), 纪晓俊 (Ji X J), 黄和 (Huang H), 聂志奎 (Nie Z K), 任潇 (Ren X), 胡南 (Hu N), 李霜 (Li S). 分析化学 (Chinese Journal of Analytical Chemistry), 2009, 37(5): 681—684

[41] Biebl H, Zeng A P, Menzel K, Deckwer W D. Appl. Microbiol. Biotechnol., 1998, 50: 24—29

[42] Petrov K, Petrova P. Appl. Microbiol. Biotechnol., 2009, 84: 659—665

[43] Petrov K, Petrova P. Appl. Microbiol. Biotechnol., 2010, DOI: 10. 1007/s00253—010—2545—z

[44] Wang A L, Wang Y, Jiang T Y, Li L X, Ma C Q, Xu P. Appl. Microbiol. Biotechnol., 2010, 87: 965—970

[45] 马翠卿 (Ma C Q), 许平 (Xu P), 王爱龙 (Wang A L), 王钰 (Wang Y), 李理想 (Li L X), 唐鸿志 (Tang H Z). CN 200910015400. 9, 2009

[46] Sun L H, Wang X D, Dai J Y, Xiu Z L. Appl. Microbiol. Biotechnol., 2009, 82: 847—852

[47] Gao J, Xu H, Li Q J, Feng X H, Li S. Bioresour. Technol., 2010, DOI: 10. 1016/j. biortech. 2010. 03. 143

[48] Nilegaonkar S, Bhosale S B, Kshirsagar D C, Kapadi A H. World J. Microbiol. Biotechnol., 1992, 8: 378—381

[49] Laube V M, Groleau D, Martin S M. Biotechnol. Lett., 1984, 6: 257—262

[50] Sivakumar A, Swaminathan T, Baradarajan A. Bioproc. Biosyst. Eng., 1995, 13: 49—50

[51] Laube V M, Groleau D, Martin S M. Biotechnol. Lett., 1984, 6: 535—540

[52] Qin J Y, Xiao Z J, Ma C Q, Xie N Z, Liu P H, Xu P. Chinese J. Chem. Eng., 2006, 14: 132—136

[53] Ji X J, Huang H, Du J, Zhu J G, Ren L J, Li S, Nie Z K. Bioresour. Technol., 2009, 100: 5214—5218

[54] Ji X J, Huang H, Li S, Du J, Lian M. Biotechnol. Lett., 2008, 30, 731—734

[55] 杜军 (Du J), 纪晓俊 (Ji X J), 胡南 (Hu N), 肖爱华 (Xiao A H), 朱建国 (Zhu J G), 李霜 (Li S), 黄和 (Huang H). 中国生物工程杂志 (China Biotechnology), 2008, 28(6): 89—92

[56] Ji X J, Huang H, Zhu J G, Ren L J, Nie Z K, Du J, Li S. Appl. Microbiol. Biotechnol., 2010, 85: 1751—1758

[57] Yang G, Tian J S, Li J L. Appl. Microbiol. Biotechnol., 2007, 73: 1017—1024

[58] Ui S, Odagiri M, Mimura A, Kanai H, Kobayashi T, Kudo T. J. Ferment. Bioeng., 1996, 81: 386—389

[59] Ui S, Okajima Y, Mimura A, Kanai H, Kudo T. J. Ferment. Bioeng., 1997, 84: 185—189

[60] Ui S, Takusagawa Y, Sato T, Ohtsuki T, Mimura A, Ohkuma M, Kudo T. Lett. Appl. Microbiol., 2004, 39: 533—537

[61] Nielsen D R, Yoon S H, Yuan C J, Prather K L J. Biotechnol. J., 2010, 5: 274—284

[62] Yan Y, Lee C C, Liao J C. Org. Biomol. Chem., 2009, 7: 3914—3917

[63] Xiao Z J, Lv C J, Gao C, Qin J Y, Ma C Q, Liu Z, Liu P H, Li L X, Xu P. PLoS One, 2010, 5: e8860

[64] Zhang L Y, Sun J A, Hao Y, Zhu J W, Chu J, Wei D Z, and Shen Y L. J. Ind. Microbiol. Biotechnol., 2010, DOI: 10. 1007/s10295-010-0733-6

[65] Zheng Y, Zhang H, Zhao L, Wei L, Ma X Y, Wei D Z. J. Chem. Technol. Biotechnol., 2008, 83: 1409—1412

[66] Wei M L, Webster D A, Stark B C. Biotechnol. Bioeng., 1998, 57: 477—483

[67] Wei M L, Webster D A, Stark B C. Biotechnol. Bioeng., 1998, 59: 640—646

[68] Geckil H, Barak Z E, Chipman D M, Erenler S O, Webster D A, Stark B C. Bioproc. Biosyst. Eng., 2004, 26: 325—330

[69] Geckil H, Gencer S, Kahraman H, Erenler S O. Res. Microbiol., 2003, 154: 425—431

[70] Converti A, Perego P, Del Borghi M. Biotechnol. Bioeng., 2003, 82: 370—377

[71] Fages J, Mulard D, Rouquet J, Wilhelm J L. Appl. Microbiol. Biotechnol., 1986, 25: 197—202

[72] Jansen N B, Flickinger M C, Tsao G T. Biotechnol. Bioeng., 1984, 26: 362—369

[73] Beronio Jr P B, Tsao G T. Biotechnol. Bioeng., 1993, 42: 1263—1269

[74] Moes J, Griot J M, Heinzle K E, Heinzle E, Dunn I J, Bourne J R. Biotechnol. Bioeng., 1985, 27: 482—489

[75] Nakashimada Y, Kanai K, Nishio N. Biotechnol. Lett., 1998, 20: 1133—1138

[76] Syu M J, Hou C L. Bioproc. Biosyst. Eng., 1997, 17: 203—213

[77] Syu M J, Hou C L. Bioproc. Biosyst. Eng., 1999, 21: 141—149

[78] Zeng A P, Byun T G, Posten C, Deckwer W D. Biotechnol. Bioeng., 1994, 44: 1107—1114

[79] Zhang L Y, Yang Y L, Sun J A, Shen Y L, Wei D Z, Zhu J W, Chu J. Bioresour. Technol., 2010, 101: 1961—1967

[80] Pirt S J, Callow D S. J. Appl. Bacteriol., 1958, 21: 188—205

[81] Ramachandran K B, Goma G. J. Biotechnol., 1988, 9: 39—46

[82] Lee H K, Maddox I S. Biotechnol. Lett., 1984, 6: 815—818

[83] Lee H K, Maddox I S. Enzyme Microb. Technol., 1986, 8: 409—411

[84] Champluvier B, Francart B, Rouxhet P G. Biotechnol. Bioeng., 1989, 34: 844—853

[85] Yu E K C, Saddler J N. Trends Biotechnol., 1985, 3: 100—104

[86] Tsao G T. Final report, USDOE, Contract No: EC—77-S-02-4298, July 31, 1978

[87] Anvari M, Pahlavanzadeh H, Vasheghani-Farahani E, Khayati G. J. Ind. Microbiol. Biotechnol., 2009, 36: 313—317

[88] Jiang B, Lia Z G, Dai J Y, Zhang D J, Xiu Z L. Process Biochem., 2009, 44: 112—117

[89] Sun L H, Jiang B, Xiu Z L. Biotechnol. Lett., 31: 371—376

[90] Qureshi N, Meagher M M, Hutkins R W. Sep. Sci. Technol., 1994, 29: 1733—1748

[91] Shao P, Kumar A. J. Membr. Sci., 2009, 329: 160—168

[92] Shao P, Kumar A. J. Membr. Sci., 2009, 339: 143—150

[93] 黄和 (Huang H), 纪晓俊 (Ji X J), 李霜 (Li S), 胡南 (Hu N), 朱建国 (Zhu J G), 杜军 (Du J), 任潇 (Ren X). CN 200810024865. 6, 2008

[94] 黄和 (Huang H), 闫婕 (Yan J), 纪晓俊 (Ji X J), 李霜 (Li S), 胡耀池 (Hu Y C). CN 200810122489. 4, 2008

[95] Alper H, Stephanopoulos G N. Metab. Eng., 2007, 9: 258—267

[96] Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Nature, 2009, 460: 894—899

[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[4] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[5] 薛宗涵, 马楠, 王炜罡. 大气中的单环芳香族硝基化合物[J]. 化学进展, 2022, 34(9): 2094-2107.
[6] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[7] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 高文艳, 赵玄, 周曦琳, 宋雅然, 张庆瑞. 提高非均相芬顿催化活性策略、研究进展及启示[J]. 化学进展, 2022, 34(5): 1191-1202.
[10] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[11] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[12] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[13] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[14] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[15] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
阅读次数
全文


摘要

生物制造2,3-丁二醇:回顾与展望