English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2428-2435 前一篇   后一篇

• 综述与评论 •

基于质谱的蛋白质O-糖基化分析研究进展

王胜, 邹霞, 张延   

  1. 上海交通大学系统生物医学研究院教育部系统生物医学重点实验室 上海 200240
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:yanzhang2006@sjtu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划课题( No. 2007CB914703)、 国家自然科学基金项目(No. 30770482)和上海市博士后资助计划面上项目(10R21413400)资助

Recent Advances in Mass Spectrometry Based Analysis of Protein O-glycosylation

Wang Sheng, Zou Xia, Zhang Yan   

  1. Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240,China
  • Online:2010-12-24 Published:2010-11-04

蛋白质的O-糖基化是一种重要的蛋白质翻译后修饰,它和N-糖基化一样是蛋白质糖基化修饰的主要形式。蛋白质的O-糖基化对蛋白质的结构功能有重要的影响,因此分析蛋白质的O-糖基化具有重要的生物学意义。蛋白质O-糖基化分析包含4个方面的内容:(1)鉴定O-糖基化蛋白质的种类; (2)鉴定糖基化位点; (3)鉴定糖链结构; (4)糖链的定量分析。由于缺少保守的O-糖基化氨基酸特征序列,缺乏通用的糖苷酶以及O-糖链结构的复杂性等原因,基于质谱的蛋白质O-糖基化的分析目前仍处于方法开发阶段。本文主要介绍基于质谱的O-糖基化蛋白质的分析方法学在近期取得的一些进展,包括以下4个方面:O-糖蛋白/多肽的富集、O-糖链的解离、O-糖链的结构分析及O-糖基化定量分析。

O-Glycosylation is an important post translational modification of proteins. It is the main type of protein glycosylation as well as N-glycosylation. Because of its significant roles in modulating the function and structure of proteins, it is necessary to study protein O-glycosylation in biomedicine research. The main tasks of protein O-glycosylation analysis are: (1) identification of O-glycosylated proteins, (2) location of O-glycosylation site on proteins,(3) O-glycan structure interpretation and (4)quantitative analysis. Mass spectrometry (MS) has become the key technology for the analysis of protein O-glycosylation. However, analysis of O-glycosylation is a challenge: there is no consensus sequence of O-glycosylation and no universal cleavage enzyme, and the O-glycans are very complicated. Besides the invention of new instruments like LTQ Velos, many novel methods have been reported recently to conquer this challenge. In this review we try to cover these improvements for analysis of protein O-glycosylation, including four aspects: enrichment of O-glycoproteins/peptides, dissociation of O-glycan from proteins, O-glycan structure identification and quantitative analysis.

Contents
1 Introduction
2 Enrichment of O-glycosylated proteins/peptides
2.1 Lectin affinity enrichment
2.2 Hydrophilic chromatography
2.3 Boric acid affinity enrichment
2.4 Hydrazide chemistry capture and release
2.5 Capillary electrophoresis
2.6 Electrophoresis methods for mucin separation
2.7 Chemo-enzymatic labeling of O-GlcNAc
3 Release of O-glycans from proteins
4 Mass spectrometry
4.1 Mass spectrometry
4.2 Tandem mass spectrometry
5 Quantitative analysis
5.1 Quantitative analysis of glycoproteins
5.2 Quantitative analysis of glycans
6 Conclusion and prospects

中图分类号: 

()


[1] Hagglund P, Bunkenborg J, Elortza F, Jensen ON, Roepstorff P J. Proteome Res., 2004, 3: 556—566

[2] Wu A M, Song S C, Sugii S, Herp A. Indian J. Biochem. Biophys., 1997, 34: 61—71

[3] Lin Y R, Reddy B V, Irvine K D. Dev. Dyn., 2008, 237: 3703—3714

[4] Varki A, Cummings R D, Esko J D, Freeze H H, Stanley P, Bertozzi C R, Hart G W, Etzler M E. Essentials of Glycobiology(Second Edition). New York: Cold Spring Harbor Laboratory Press, 2009

[5] Aebersold R, Mann M. Nature, 2003, 422: 198—207

[6] Graham R L J, Hess S. Current Proteomics, 2010, 7: 57—81

[7] Reinhold V N, Reihold B B, Costello C E. Anal. Chem., 1995, 67: 1772—1784

[8] Jensen P H, Kolarich D, Packer N H. FEBS Journal, 2010, 277: 81—94

[9] Schwientek T, Mandel U, Roth U, Müller S, Hanisch FG. Proteomics, 2007, 7: 3264—3277

[10] Kato K, Takeuchi H, Ohki T, Waki M, Usami K, Hassan H, Clausen H, Irimura T. Biochemical and Biophysical Research Communications, 2008, 371: 698—701

[11] Tachibana K, Nakamura S, Wang H, Iwasaki H, Tachibana K, Maebara K, Cheng L, Hirabayashi J, Narimatsu H. Glycobiology, 2006, 16: 46—53

[12] Durham M, Regnier FE. J. Chromatography A, 2006, 1132: 165—173

[13] Darula Z, Medzihradszky K F. Mol. Cel. Proteomics, 2009, 8:2515—2526

[14] Yu L, Li XL, Guo ZM, Zhang XL, Liang XM. Chem. Eur. J., 2009, 15: 12618—12626

[15] Ding W, Hill JJ, Kelly J. Anal. Chem., 2007, 79: 8891—8899

[16] Ding W, Nothaft H, Szymanski C M, Kelly J. Mol. Cel. Proteomics, 2009, 8: 2170—2185

[17] Zhang LJ, Lu HJ, Yang PY. Anal. Bioanal. Chem., 2010, 396: 199—203

[18] Zhou W, Yao N, Yao G, Deng CH, Zhang XM, Yang PY. Chem. Commun., 2008, 44:5577—5579

[19] Yao G, Zhang H, Deng C, Lu H, Zhang XM, Yang PY. Rapid Commun. Mass Spectrom., 2009, 23: 3493—3500

[20] Xu Y, Wu ZX, Zhang LJ, Lu HJ, Yang PY, Webley PA, Zhao DY. Anal. Chem., 2009, 81:503—508

[21] Nilsson J, Rüetschi U, Halim A, Hesse C, Carlsohn E, Brinkmalm G, Larson G. Nature Methods,2009,6: 809—811

[22] Klement E, Lipinszki Z, Kupihar Z, Udvardy A, Medzihradszky KF. J. Proteome Res., 2010, 9: 2200—2206

[23] 邓延倬(Deng YZ),何金兰(He JL). 高效毛细管电泳(High Efficient Capillary Electrophoresis) . 北京: 科学出版社(Beijing: Science Press),1996

[24] Mechref Y, Novotny MV. Mass Spectrometry Reviews, 2009,28: 207—222

[25] Zheng YF, Li HF, Guo ZH, Lin JM, Cai ZW. Electrophoresis, 2007, 28: 1305—1311

[26] Balaguer E, Demelbauer U, Pelzing M, Sanz-Nebot V, Barbosa J, Neusü C. Electrophoresis, 2006, 27: 2638 —2650

[27] Rose M C, Voynow J A. Physiol. Rev., 2006, 86: 245—278

[28] LeivonenM, Nordling S, Lundin J, von Boguslawski K, Haglund C. Oncology, 2001, 61: 299—305

[29] Seko A, Nagata K, Yonezawa S, Yamashita K. Glycobiology, 2002, 12: 379—388

[30] Xia B, Royall JA, Damera G, Sachdev GP, Cummings RD. Glycobiology, 2005, 15: 747—775

[31] Schulz B L, Packer N H, Karlsson N G. Anal. Chem., 2002, 74: 6088—6097

[32] Matsuno Y, Saito T, Gotoh M, Narimatsu H, Kameyama A. Anal. Chem., 2009, 81: 3816—3823

[33] Khidekel N, Ficarro SB, Peters EC, Hsieh-Wilson LC. Proc. Natl Acad. Sci., 2004, 101: 13132—13137

[34] Wang Z, Pandey A, Hart GW. Mol. Cel. Proteomics, 2007, 6: 1365—1379

[35] Matsuno Y, Yamada K, Tanabe A, Kinoshita M, Maruyama S, Osaka Y, Masuko T, Kakehi K. Analytical Biochemistry, 2007, 362:245—257

[36] Yamada K, Kinoshita M, Hayakawa T, Nakaya S, Kakehi K. J. Proteome Res., 2009, 8: 521—537

[37] Zhenga Y, Guob Z, Caia Z. Talanta, 2009, 78: 358—363

[38] Hédou J, Bastide B, Page A, Michalski JC, Morelle W. Proteomics, 2009, 9:2139—2148

[39] Yu YQ, Fournier J, Gilar M, Gebler JC. Anal. Chem., 2007, 79:1731—1738

[40] An HJ, Peavy TR, Hedrick JL, Lebrilla CB. Anal. Chem., 2003, 75:5628—5637

[41] Temporini C, Perani E, Calleri E, Dolcini L, Lubda D, Caccialanza G, Massolini G. Anal. Chem., 2007, 79: 355—363

[42] Dodds ED, Seipert RR, J. Proteome Res., 2009, 8: 502—512

[43] Goetz JA, Novotny MV, Mechref Y. Anal. Chem., 2009, 81: 9546—9552

[44] Hanisch FG, Teitz S, Schwientek T, Müller S. Proteomics, 2009, 9: 710—719

[45] Thomsson KA, Karlsson H, Karlsson H, Hansson GC. J. Proteome Res., 2009, 8: 538—545

[46] Wada Y, Dell A, Haslam SM, Tissot B, Canis K, Azadi P, Bckstrm M, Costello C E, Hansson G C, Hiki Y, Ishihara M, Ito H, Kakehi K, Karlsson N, Hayes C E, Kato K, Kawasaki N, Khoo K H, Kobayashi K, Kolarich D, Kondo A, Lebrilla C, Nakano M, Narimatsu H, Novak J, Novotny MV, Ohno E, Packer N H, Palaima E, Renfrow M B, Tajiri M, Thomsson K A, Yagi H, Yu S Y, Taniguchi N. Mol. Cel. Proteomics, 2010, 9: 719—727

[47] Perdivara I, Petrovich R, Allinquant B, Deterding L J, Tomer K B,Przybylski M. J. Proteome Res., 2009, 8: 631—642

[48] Hennrich M L, Boersema P J, Toorn H, Mischerikow N, Heck A J R, Mohammed S. Anal. Chem., 2009, 81: 7814—7822

[49] Seipert R R, Dodds E D, Lebrilla C B. J. Proteome Res., 2009, 8:493—501

[50] Gardner M W, Smith S I, Ledvina A R, Madsen J A, Coon J J, Schwartz J C, Stafford G C Jr,Brodbelt J S. Anal. Chem., 2009, 81: 8109—8118

[51] Gstaiger M, Aebersold R. Nature Reviews Genetics, 2009, 10: 617—627

[52] Kaji H, Yamauchi Y, Takahashi N, Isobe T. Nature Protocols, 2006, 1: 3019—3027

[53] Liu Z, Cao L, He Y F, Qiao L, Xu C J, Lu H J, Yang P Y. J. Proteome Res., 2010, 9: 227—236

[54] Vosseller K, Hansen K C, Chalkley R J, Trinidad J C, Wells L, Hart G W,Burlingame A L. Proteomics, 2005, 5: 388—398

[55] Kang P, Mechref Y, Kyselova Z, Goetz J A, Novotny M V. Anal. Chem., 2007, 79: 6064—6073

[56] Xie Y, Liu J, Zhang J, Hedrick J L, Lebrilla C B. Anal. Chem., 2004, 76: 5186—5197

[57] Xia B, Feasley C L, Sachdev G P, Smith D F, Cummings R D. Anal. Biochem., 2009, 387: 162—170

[58] Bowman M J, Zaia J. Anal. Chem., 2010,82: 3023—3031

[59] Prien J M, Prater B D, Qin Q, Cockrill S L. Anal. Chem., 2010, 82: 1498—1508

[60] Uematsu R, Furukawa J, Nakagawa H, Shinohara Y, Deguchi K, Monde K, Nishimura S. Mol. Cell. Proteomics, 2005, 4: 1977—1989

[61] Orlando R, Lim J M, Atwood J A, Angel P M, Fang M, Aoki K, Alvarez-Manilla G, Moremen K W, York W S, Tiemeyer M, Pierce M, Dalton S, Wells L. J. Proteome Res., 2009, 8: 3816—3823

[62] Krishnamoorthy L, Mahal L K. ACS Chemical Biology, 2009, 4: 715—732

[63] Curran D P. Science, 2008, 321: 1645—1646

[1] 赵超, 蔡宗苇. 基于质谱成像和组学分析的环境毒理研究[J]. 化学进展, 2021, 33(4): 503-511.
[2] 王子璇, 厉欣, 再帕尔·阿不力孜. 化学衍生用于代谢物异构体质谱分析[J]. 化学进展, 2021, 33(3): 406-416.
[3] 杨笑宇, 贾珊珊, 张娟, 亓英华, 胡雪雯, 沈宝洁, 钟鸿英. 质谱光电离/解离技术和生物分子结构鉴定[J]. 化学进展, 2021, 33(12): 2316-2333.
[4] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[5] 梁阿新, 汤波, 孙立权, 张鑫, 侯慧鹏, 罗爱芹. 用于N-糖肽/糖蛋白分离富集的新型材料[J]. 化学进展, 2019, 31(7): 996-1006.
[6] 李瑜玲, 赵君博, 郭寅龙. 常压电喷雾离子化的机理及应用[J]. 化学进展, 2019, 31(1): 94-109.
[7] 任娟, 边申, 王奕允, 孔祥蕾. 幻数团簇丝氨酸八聚体:结构和手性特征[J]. 化学进展, 2018, 30(4): 383-397.
[8] 顾芳婷, 胡敏*, 郑竞, 郭松. 大气颗粒物中有机硝酸酯的研究进展[J]. 化学进展, 2017, 29(9): 962-969.
[9] 刘婧靖, 何晓伟, 何燕, 喻目千, 蒋乐, 陈波. 纸喷雾敞开式质谱法的发展和应用[J]. 化学进展, 2017, 29(6): 659-666.
[10] 王方丽, 洪敏, 许丽丹, 耿志荣. 基于纳米材料的表面辅助激光解吸离子化质谱研究[J]. 化学进展, 2015, 27(5): 571-584.
[11] 田志美, 刘汪丹, 程龙玖. 硫醇保护金团簇的实验和理论研究现状[J]. 化学进展, 2015, 27(12): 1743-1753.
[12] 丁鹏, 陈掀, 李秀玲, 卿光焱, 孙涛垒, 梁鑫淼. 基于纳米粒子的糖蛋白/糖肽分离富集方法[J]. 化学进展, 2015, 27(11): 1628-1639.
[13] 常姗燕, 刘夫锋*. 三磷酸腺苷结合盒式转运体的分子模拟[J]. 化学进展, 2013, 25(07): 1208-1218.
[14] 徐冲, 范艳璇, 范琳媛, 曹洁*, 胡长文*. 质谱在多金属氧簇化学中的应用[J]. 化学进展, 2013, 25(05): 809-820.
[15] 储根柏, 陈军, 刘付轶*, 盛六四* . 气相自由基反应动力学的光电离质谱研究[J]. 化学进展, 2012, 24(11): 2097-2105.