English
新闻公告
More
化学进展 2010, Vol. 22 Issue (12): 2388-2396 前一篇   后一篇

• 综述与评论 •

蛋白质高分子结合体

何乃普, 何玉凤, 王荣民, 宋鹏飞, 周云   

  1. 西北师范大学化学化工学院 生态环境相关高分子材料教育部重点实验室 甘肃省高分子材料 重点实验室 兰州 730070
  • 出版日期:2010-12-24 发布日期:2010-11-04
  • 作者简介:e-mail:wangrm@nwnu.edu.cn
  • 基金资助:

    教育部新世纪优秀人才支持计划和国家自然科学基金项目(No.20964002,20274034)资助

Protein Polymer Conjugates

He Naipu, He Yufeng, Wang Rongmin, Song Pengfei, Zhou Yun   

  1. Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
  • Online:2010-12-24 Published:2010-11-04

蛋白质高分子结合体是蛋白质与高分子化合物以特定位置或方式结合的产物。其中,蛋白质(包括酶和多肽)分子中氨基酸残基上的氨基、巯基和羧基是常用的结合位点。本文主要对蛋白质高分子结合体的制备方法进行了综述。聚乙二醇是合成高分子中能够有效改善蛋白质性能的修饰剂,而多糖则是用于制备蛋白质高分子结合体较成功的天然高分子化合物。“点击化学”、活性聚合技术等技术已经被成功应用于蛋白质高分子结合体的制备。某些具有特异结合功能基团的化合物(如金属卟啉、生物素等)与高分子共价结合后也可制备蛋白质高分子结合体。在研究蛋白质高分子结合体制备方法的基础上,近年来开始了这类大分子的自组装行为研究,尤其是对巨型双亲性分子自组装行为的研究,这为设计和构筑先进功能材料提供了新的思路。与高分子化合物的结合是改善蛋白质性能和拓宽蛋白质应用范围的重要技术之一。蛋白质高分子结合体不但可用于生物医药领域,而且在纳米技术和材料科学等领域具有潜在的优势。

Protein polymer conjugates are the products of proteins conjugating polymers via specific sites or manners. Amino groups, carboxyl groups and thiol groups of amino acid residues on proteins, which include enzymes and peptides, are typically modified sites. This review describes recent progress in preparing protein polymer conjugates. Polyethylene glycol is one of the successfully synthetic polymers in improving the performance of proteins. Polysaccharides are one of the most successful natural polymers. Modern chemical synthesis strategies, such as  "click chemistry"  and living radical polymerization, have been recently applied in preparing protein polymer conjugates. Some functional compounds with specific functional groups, such as metalloporphyrin and vitamin, can be bound to proteins. Then, they are conjugated with synthetic or natural polymers. Based on progress in preparing protein polymer conjugates, self-assembly behaviors of these macromolecules have been investigated in recent years. Especially, self-assembly behaviors of giant amphiphile have gained increased attention. Therefore, studies on self-assembly behaviors of protein conjugates offered a new strategy for designing and fabricating advanced functional materials. The conjugation of proteins with polymers is an important technology to improve the performance of proteins and broaden applications range of proteins. These macromolecules could be applied in the field of biomedicine and shows potential in many other areas, such as nanotechnology, materials science and so on.

Contents
1 Introduction
2 Polymer modifiers
2.1 Polyethylene glycol (PEG)
2.2 Polysaccharides
3 Strategies of fabricating protein polymer conjugates
3.1 Classical methods
3.2 Living radical polymerization(LRP)
3.3 Specific binding of polymers and proteins
4 Self-assembly of protein polymer conjugates
5 Summary

中图分类号: 

()


[1] Niemeyer C M. Angew. Chem. Int. Ed., 2001, 40: 4128—4158

[2] Patil G V. Drug Dev. Res., 2003, 58: 219—247

[3] Sundar S, Kundu J, Kundu S C. Sci. Technol. Adv. Mater., 2010, 11: 1—13

[4] Poole A J, Church J S, Huson M G E. Biomacromolecules, 2009, 10: 1—8

[5] Veronese F M, Morpurgo M. IL Farmaco, 1999, 54: 497—516

[6] Khandare J, Minko T. Prog. Polym. Sci., 2006, 31: 359—397

[7] 姜忠义 (Jiang Z Y), 高蓉 (Gao R), 许松伟 (Xu S W), 王艳强 (Wang Y Q). 化学通报(Chemistry), 2001 , c01062. (2001-04-04). http://www.hxtb.org/col/2001/c01062.htm.

[8] Thordarson P, Le Droumaguet B, Velonia K. Appl. Microbiol. Biotechnol., 2006, 73: 243—254

[9] 周海梦 (Zhou H M), 王洪睿 (Wang H R). 蛋白质化学修饰 (Modification of Protein). 北京: 清华大学出版社 (Beijing: Tsinghua University Press ), 1998. 4—43

[10] Lee K Y, Yuk S H. Prog. Polym. Sci., 2007, 32: 669—697

[11] Haag R, Kratz F. Angew. Chem. Int. Ed., 2006, 45: 1198—1215

[12] Park J H, Lee S, Kim J H, Park K, Kim K, Kwon I C. Prog. Polym. Sci., 2008, 33: 113—137

[13] Allen T M, Cullis P R. Science, 2004, 303: 1818—1822

[14] Marshall S A, Lazar G A, Chirino A J, Desjarlais J R. Drug Discovery Today, 2003, 8: 212—221

[15] Nygren P A, Skerra A. J. Immunol. Methods, 2004, 290: 3—28

[16] Bailon P, Palleroni A, Schaffer C A, Spence C L, Fung W J, Porter J E, Ehrlich G K, Pan W, Xu Z X, Modi M W, Farid A, Berthold W. Bioconjugate Chem., 2001, 12: 195—202

[17] Reynhout I C, Cornelissen J J L M, Nolte R J M. Acc. Chem. Res., 2009, 42: 681—692

[18] Vicent M J, Duncan R. Trends Biotechnol., 2006, 24: 39—47

[19] Zhu G Y, Wang P. J. Am. Chem. Soc., 2004, 126: 11132—11133

[20] Barbey R, Lavanant L, Paripovic D, Schuwer N, Sugnaux C, Tugulu S, Klok H A. Chem. Rev., 2009, 109: 5437—5527

[21] Dirks A J, Nolte R. J. M, Cornelissen J J L M. Adv. Mater., 2008, 20: 3953—3957

[22] Lutza J F, Brner H G. Prog. Polym. Sci., 2008, 33 :1—39

[23] De P, Li M, Gondi S R, Sumerlin B S. J. Am. Chem. Soc., 2008, 130: 11288—11289

[24] Brner H G. Prog. Polym. Sci., 2009, 34: 811—851

[25] Fee C J. Adv. Chem. Engineering, 2009, 35: 211—222

[26] Kochendoerfer G G. Curr. Opin. Chem. Biol., 2005, 9: 555—560

[27] Veronese F M, Pasut G. Drug Discovery Today, 2005, 10: 1451—1458

[28] Marsac Y, Cramer J, Olschewski D, Alexandrov K. Becker C F W. Bioconjugate Chem., 2006, 17: 1492—1498

[29] Castelletto V, Krysmann M J, Clifton L A, Lambourne J, Noirez L. J. Phys. Chem. B, 2007, 111: 11330—11336

[30] Abuchowski A, McCoy J R, Palczuk N C, van Es T, Davis F F. J. Biol. Chem., 1977, 252: 3582—3586

[31] Roberts M J, Bentley M D, Harris J M. Adv. Drug Deliv. Rev., 2002, 54: 459—476

[32] Caliceti P, Veronese F M. Adv. Drug Deliv. Rev., 2003, 55: 1261—1277

[33] Hershfield M S. Biochemistry and Immunology of Poly (ethylene glycol)-Modified Adenosine Deaminase (PEG-ADA). Poly (ethylene glycol), ACS, 1997. Chapter 10, 145—154

[34] Hershfield M S. Clinical Immunology and Immunopathology, 1995, 76: S228—S232

[35] Pratt M R, Bertozzi C R. Chem. Soc. Rev., 2005, 34: 58—68

[36] Imperiali B, O’Connor S E. Curr. Opin. Chem. Biol., 1999, 3: 643—649

[37] 王镜言 (Wang J Y), 朱圣庚 (Zhu S G), 徐长法 (Xu C F). 生物化学 (Biological Chemistry). 北京: 高等教育出版社 (Beijing:Higher Education Press), 2002. 57—58

[38] Hattori M, Nagasawa K, Ohgata K, Sone N, Fukuda A, Matsuda H, Takahashi K. Bioconjugate Chem., 2000, 11: 84—93

[39] Hattori M, Ogino A, Nakai H, Takahashi K. J. Agric. Food Chem., 1997, 45: 703—708

[40] Chen T H, Vazquez-Duhalt R, Wu C F, Bentley W E, Payne G F. Biomacromolecules, 2001, 2: 456—462

[41] Guggi D, Krauland A H, Bernkop-Schnürch A. J. Controlled Release, 2003, 92: 125—135

[42] Mi F L. Biomacromolecules, 2005, 6: 975—987

[43] Dickinson E, Galazka V B. Food Hydrocolloids, 1991, 5: 281—296

[44] Sato R, Katayama S, Sawabe T, Saeki H. J. Agric. Food Chem., 2003, 51: 4376—4381

[45] Sanz M L, Corzo-Martinez M, Rastall R A, Olano A, Moreno F J. J. Agric. Food Chem., 2007, 55: 7916—7925

[46] Dunlap C A, Cote G. J. Agric. Food Chem., 2005, 53: 419 —423

[47] Chen T H, Small D A, Wu L Q, Rubloff G W, Ghodssi R, Vazquez-Duhalt R, Bentley W E, Payne G F. Langmuir, 2003, 19: 9382—9386

[48] Hattori M, Numamoto K, Kobayashi K, Takahashi K. FJ. Agric. Food Chem., 2000, 48: 2050—2056

[49] Vazquez-Duhalt R, Tinoco R, D'Antonio P, Topoleski L D T, Payne G F. Bioconjugate Chem., 2001, 12: 301—306

[50] Masuko T, Iwasaki N, Yamane S, Funakoshi T, Majima T, Minami A, Ohsuga N, Ohta T, Nishimura S I. Biomaterials, 2005, 26: 5339—5347

[51] Wang Y C, Kao S H, Hsieh H J. Biomacromolecules, 2003, 4: 224—231

[52] He J K, Li D C, LiuY X, Yao B, Zhan H X, Lian Q, Lu B H, Lv Y. Acta Biomaterials, 2009, 5: 453—461

[53] Ayres L, Vos M R J, Adams P J H M, Shklyarevskiy I O, van Hest J C M. Macromolecules, 2003, 36: 5967—5973

[54] Ayres L, Koch K, Adams P H H M, van Hest J C M. Macromolecules, 2005, 38: 1699—1704

[55] Smeenk J M, Ayres L, Stunnenberg H G, van Hest J C M. Macromol. Symp., 2005, 225: 1—8

[56] Ayres L, Grotenbreg G M, van der Marel G. A, Overkleeft H S, Overhand M, van Hest J C M. Macromol. Rapid Commun., 2005, 26: 1336—1340

[57] Gauthier M A, Klok H A. Chem. Commun (Camb)., 2008, 21: 2591—611

[58] Wong L S, Khan F, Micklefield J. Chem. Rev., 2009, 109: 4025—4053

[59] Droumaguet B L, Velonia K. Macromol. Rapid Commun., 2008, 29: 1073—1089

[60] Dirks A J, Cornelissen J J L M, van Delft F L, van Hest J C M, Nolte R J M, Rowan A E, Rutjes F P J T. QSAR Comb. Sci., 2007, 26: 1200—1210

[61] 赵正达 (Zhao Z D), 袁伟忠 (Yuan W Z), 顾书英 (Gu S Y), 任天斌 (Ren T B), 任杰 (Ren J). 化学进展 (Progress in Chemistry), 2010, 22: 417—426

[62] Dirks A J, van Berkel S S, Hatzakis N S, Opsteen J A, van Delft F L, Cornelissen J J L M, Rowan A E, van Hest J C M, Rutjes F P J T, Nolte R J M. Chem. Commun., 2005:4172—4174

[63] Parrish B, Breitenkamp R B, Emrick T. J. Am. Chem. Soc., 2005, 127: 7404—7410

[64] Shi Q, Chen X, Lu T, Jing X. Biomaterials,2008, 29:1118—1126

[65] Boyer C, Bulmus V, Davis T P, Ladmiral V, Liu J Q, Perrier S. Chem. Rev., 2009, 109: 5402—5436

[66] Nicolas J, Mantovani G, Haddleton D M L. Macromol. Rapid Commun., 2007, 28: 1083—1111

[67] Bontempo D, Maynard H D. J. Am. Chem. Soc., 2005, 127: 6508—6509

[68] Mei Y, Beers K L, Michelle Byrd H C, vander Hart D L, Washburn N R. J. Am. Chem. Soc., 2004, 126: 3472—3476

[69] Lele B S, Murata H, Matyjaszewski K, Russell A J. Biomacromolecules, 2005, 6: 3380—3387

[70] Bontempo D, Heredia K L, Fish B A, Maynard H D. J. Am. Chem. Soc., 2004, 126: 15372—15373

[71] Heredia K L, Bontempo D, Ly T, Byers J T, Halstenberg S, Maynard H D. J. Am. Chem. Soc., 2005, 127: 16955—16960

[72] Boyer C, Bulmus V, Liu J Q, Davis T P, Stenzel M H, Barner-Kowollik C. J. Am. Chem. Soc., 2007, 129: 7145—7154

[73] Liu J Q, Bulmus V, Herlambang D L, Barner-Kowollik C M. Stenzel H, Davis T P. Angew. Chem. Int. Ed., 2007, 46: 3099—3103

[74] Lu Y, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 460: 855—862

[75] Boyer C, Liu J Q, Bulmus V, Davis T P, Barner-Kowollik C, Stenzel M H. Macromolecules, 2008, 41: 5641—5650

[76] Lindqvist Y, Schneider G. Cur. Opin. Struct. Biol., 1996, 6: 798—803

[77] Letondor C, Ward T R. ChemBioChem, 2006, 7: 1845—1852

[78] Lu Y, Berry S M, Pfister T D. Chem. Rev., 2001, 101: 3047—3080

[79] 刘有芹 (Liu Y Q), 颜芸 (Yan Y), 沈含熙 (Shen H X). 化学进展 (Progress in Chemistry), 2005, 17: 1067—1073

[80] Hitomi Y, Hayashi T, Wada K, Mizutani T, Hisaeda Y, Ogoshi H. Angew. Chem. Int. Ed., 2001, 40: 1098—1101

[81] Huang Y B, Komatsu T, Wang R M, Nakagawa A, Tsuchida E. Bioconjugate Chem., 2006, 17: 393—398

[82] Komatsu T, Wang R M, Zunszain P A, Curry S, Tsuchida E. J. Am. Chem. Soc., 2006, 128: 16297—16301

[83] 王荣民 (Wang R M), 朱永峰 (Zhu Y F), 何玉凤 (He Y F), 李岩 (Li Y), 毛崇武 (Mao C W), 何乃普 (He N P). 化学进展 (Progress in Chemistry), 2010, In Press

[84] Wang R M, Komatsu T, Nakagawa A, Tsuchida E. Bioconjugate Chem., 2005, 16: 23—26

[85] Boerakker M J, Botterhuis N E, Bomans P H H, Frederik P M, Meijer E M, Nolte R J M, Sommerdijk N A J M. Chem. Eur. J., 2006, 12: 6071— 6080

[86] 王荣民 (Wang R M), 赵明 (Zhao M), 何玉凤 (He Y F), 郝二霞 (Hao E X), 申国瑞 (Shen G R). 化学进展 (Progress in Chemistry). 2007, 19: 1783—1790

[87] Kitagishi H, Kakikura Y, Yamaguchi H, Oohora K, Harada A, Hayashi T. Angew. Chem. Int. Ed., 2009, 48: 1271—1274

[88] Heredia K L, Grover G N, Tao L, Maynard H D. Macromolecules, 2009, 42: 2360—2367

[89] Mok H, Bae K H, Ahn C H, Park T G. Langmuir, 2009, 25: 1645—1650

[90] Hannink J M, Cornelissen J J L M, Farrera J A, Foubert P, de Schryver F C, Sommerdijk N A J M, Nolte R J M. Angew. Chem. Int. Ed., 2001, 40: 4732—4734

[91] 法内斯托克S R, 斯泰因比歇尔A (主编). 李秀荣 (Li S R) 主译. 生物高分子 (第7卷) ——聚酰胺和蛋白质材料Ⅰ (Biopolymers.Volume7: Polyamides and Complex Proteinaceous Materials Ⅰ). 北京: 化学工业出版社 (Beijing: Chemical Industry Press), 2005. 241—242

[92] 张先恩 (Zhang X E). 科学通报 (Chinese Science Bulletin), 2009, 54: 2682—2690

[93] Goodsell D S (著). 张文熊 (Zhang W X), 张鹏 (Zhang P), 王文雅 (Wang W Y) 等译. 生物纳米技术——来自大自然的启示 (Bionanotechnology Lessons from Nature). 北京: 化学工业出版社 (Beijing: Chemical Industry Press), 2006. 64—74

[94] Niemeyer C M. Angew. Chem. Int. Ed., 2001, 40: 4128—4158

[95] Carlsen A, Lecommandoux S. Curr. Opin. Colloid Interface Sci., 2009, 14: 329—339

[96] Petka W A, Harden J L, McGrath K P, Wirtz D, Tirrell D A. Science, 1998, 281: 389—392

[97] Taubert A, Napoli A, Meier W. Curr. Opin. Chem. Biol., 2004, 8: 598—603

[98] Hartgerink J D, Beniash E, Stupp S I. Science, 2001, 294: 1684—1688

[99] Velonia K, Rowan A E, Nolte R J M. J. Am. Chem. Soc., 2002, 124: 4224—4225

[100] Reynhout I C, Cornelissen J J L M, Nolte R J M. J. Am. Chem. Soc., 2007, 129: 2327—2332

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 廖伊铭, 吴宝琪, 唐荣志, 林峰, 谭余. 环张力促进的叠氮-炔环加成反应[J]. 化学进展, 2022, 34(10): 2134-2145.
[8] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[11] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[12] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
[13] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[14] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[15] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
阅读次数
全文


摘要

蛋白质高分子结合体